The Wigner distribution for classical systems

被引:52
作者
Galleani, L
Cohen, L
机构
[1] CUNY, New York, NY 10021 USA
[2] Politecn Torino, I-10129 Turin, Italy
关键词
Wigner distribution; time-frequency; quasi-distributions; phase space;
D O I
10.1016/S0375-9601(02)01138-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an explicit procedure for obtaining the equation of motion for the Wigner distribution when the underlying governing equation is a linear ordinary or partial differential equation. The cases of constant and variable coefficients are considered. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:149 / 155
页数:7
相关论文
共 34 条
[1]   TIME-VARYING SPECTRUM ESTIMATION FOR A GENERAL-CLASS OF NONSTATIONARY PROCESSES [J].
AMIN, MG .
PROCEEDINGS OF THE IEEE, 1986, 74 (12) :1800-1802
[2]   High spectral resolution time-frequency distribution kernels [J].
Amin, MG ;
Williams, WJ .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (10) :2796-2804
[3]   Applications of time-frequency analysis to signals from manufacturing and machine monitoring sensors [J].
Atlas, LE ;
Bernard, GD ;
Narayanan, SB .
PROCEEDINGS OF THE IEEE, 1996, 84 (09) :1319-1329
[4]   IMPROVED TIME-FREQUENCY REPRESENTATION OF MULTICOMPONENT SIGNALS USING EXPONENTIAL KERNELS [J].
CHOI, HI ;
WILLIAMS, WJ .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1989, 37 (06) :862-871
[5]   TIME FREQUENCY-DISTRIBUTIONS - A REVIEW [J].
COHEN, L .
PROCEEDINGS OF THE IEEE, 1989, 77 (07) :941-981
[6]   GENERALIZED PHASE-SPACE DISTRIBUTION FUNCTIONS [J].
COHEN, L .
JOURNAL OF MATHEMATICAL PHYSICS, 1966, 7 (05) :781-&
[7]  
Cohen L., 1995, TIME FREQUENCY ANAL
[8]  
Gabor D., 1946, J I ELEC ENGRS PART, V93, P429, DOI [DOI 10.1049/JI-3-2.1946.0074, 10.1049/ji-3-2.1946.0074, 10.1049/JI-3-2.1946.0074]
[9]   Wigner equation of motion for time-dependent potentials [J].
Galleani, L ;
Cohen, L .
JOURNAL OF MODERN OPTICS, 2002, 49 (3-4) :561-569
[10]  
GALLEANI L, 2001, IEEE EURASIP NSIP 20