On the influence of a dissipative boundary on the energy decay for a porous elastic solid

被引:11
作者
Lazzari, Barbara [1 ]
Nibbi, Roberta [1 ]
机构
[1] Univ Bologna, Dept Math, I-40126 Bologna, Italy
关键词
Porous-elasticity; Dissipative boundary; Exponential stability; EXPONENTIAL DECAY; VOIDS; MEMORY;
D O I
10.1016/j.mechrescom.2009.01.010
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper we study the asymptotic behavior of a porous elastic solid with a dissipative boundary. We prove that the energy exponentially decays when the porosity viscosity is present. (c) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:581 / 586
页数:6
相关论文
共 50 条
  • [31] Optimal energy decay result for nonlinear abstract viscoelastic dissipative systems
    Mustafa, Muhammad, I
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (02):
  • [32] Decay of quasi-static porous-thermo-elastic waves
    A. Magaña
    R. Quintanilla
    Zeitschrift für angewandte Mathematik und Physik, 2021, 72
  • [33] Exponential decay for a porous elastic truncated model with time delay effects
    Dilberto da Silva Almeida Júnior
    Anderson de Jesus Araújo Ramos
    Mirelson Martins Freitas
    Baowei Feng
    Luiz Gutemberg Rosário Miranda
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2025, 71 (2)
  • [34] Decay of quasi-static porous-thermo-elastic waves
    Magana, A.
    Quintanilla, R.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (03):
  • [35] GENERAL DECAY OF POROUS ELASTIC SYSTEM WITH THERMO-VISCOELASTIC DAMPING
    Djellali, F.
    Labidi, S.
    Taallah, F.
    EURASIAN JOURNAL OF MATHEMATICAL AND COMPUTER APPLICATIONS, 2021, 9 (01): : 31 - 43
  • [36] Exponential and Polynomial Decay Rates of a Porous Elastic System with Thermal Damping
    Li, Haiyan
    Feng, Baowei
    JOURNAL OF FUNCTION SPACES, 2023, 2023
  • [37] Exponential stabilization for porous elastic system with one boundary dissipation
    Ramos A.J.A.
    Júnior D.S.A.
    Freitas M.M.
    Santos M.J.D.
    Santos A.R.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2020, 66 (1) : 113 - 134
  • [38] Energy Decay for the Strongly Damped Nonlinear Beam Equation and Its Applications in Moving Boundary
    Kim, Jung Ae
    Lee, Keonhee
    ACTA APPLICANDAE MATHEMATICAE, 2010, 109 (02) : 507 - 525
  • [39] Porous elastic system with Kelvin-Voigt: analyticity and optimal decay rate
    Oliveira, M. L. S.
    Maciel, E. S.
    Dos Santos, M. J.
    APPLICABLE ANALYSIS, 2022, 101 (08) : 2860 - 2877
  • [40] Energy decay rates for a Timoshenko system with viscoelastic boundary conditions
    Mustafa, Muhammad I.
    Messaoudi, Salim A.
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (18) : 9125 - 9131