Bond behavior of steel reinforcement in high-performance fiber-reinforced cementitious composite flexural members

被引:105
作者
Bandelt, Matthew J. [1 ]
Billington, Sarah L. [1 ]
机构
[1] Stanford Univ, Dept Civil & Environm Engn, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
High-performance fiber-reinforced cementitious composites; HPFRCC; Bond-slip; Bond stress; Reinforcement slip; Splice; Confinement; CYCLIC RESPONSE; SLIP RESPONSE; BARS; CONCRETE; DESIGN; MODEL; FRC;
D O I
10.1617/s11527-014-0475-4
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
High-performance fiber-reinforced cementitious composites (HPFRCCs) exhibit a pseudo strain hardening behavior in tension, and increased damage tolerance when loaded in compression. The unique properties of HPFRCC materials make them a viable material for increasing structural performance under severe loading conditions. In this paper, the bond performance of mild steel reinforcement embedded in HPFRCC beams is presented. Beam specimens with lap splices were tested in four-point bending to examine the bond strength and bond-slip behavior of steel reinforcement embedded in HPFRCC materials. Specimens made with three different HPFRCC mixtures, as well as a traditional normal weight concrete were tested in four point bending. The parameters investigated were the amount of concrete cover and the presence of steel confinement in the lap splice region. Experimental results show that HPFRCC normalized bond strengths increased by 37 %, on average, when compared to concrete. Furthermore, the bond-slip behavior of reinforcement in HPFRCCs had a higher toughness than observed for concrete specimens. Test results are compared with existing bond-slip models for fiber reinforced concrete from beam tests and HPFRCCs from pullout experiments, and a recommendation to modify the ascending branch of an existing bond-slip model applicable to ductile HPFRCCs is proposed.
引用
收藏
页码:71 / 86
页数:16
相关论文
共 50 条
  • [21] Experimental Investigation of Deep Beams Containing High-Performance Fiber-Reinforced Cementitious Composite
    Mohammad Rezaei
    Asadollah Ranjbar Karkanaki
    Masoud Zabihi‑Samani
    Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2022, 46 : 55 - 65
  • [22] Experimental Investigation of Deep Beams Containing High-Performance Fiber-Reinforced Cementitious Composite
    Rezaei, Mohammad
    Ranjbar Karkanaki, Asadollah
    Zabihi-Samani, Masoud
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY-TRANSACTIONS OF CIVIL ENGINEERING, 2022, 46 (01) : 55 - 65
  • [23] Strengthening of reinforced concrete columns by High-Performance Fiber-Reinforced Cementitious Composite (HPFRC) sprayed mortar with strengthening bars
    Cho, Chang-Geun
    Han, Byung-Chan
    Lim, Seung-Chan
    Morii, Noharu
    Kim, Jae-Whan
    COMPOSITE STRUCTURES, 2018, 202 : 1078 - 1086
  • [24] Seismic behavior of reinforced engineered cementitious composite members and reinforced concrete/engineered cementitious composite members: A review
    Hou, Lijun
    Xu, Ran
    Chen, Da
    Xu, Shilang
    Aslani, Farhad
    STRUCTURAL CONCRETE, 2020, 21 (01) : 199 - 219
  • [25] Behavior and Performance of Fiber-Reinforced Polymer-to-Steel Bond
    Harries, Kent A.
    Dawood, Mina
    TRANSPORTATION RESEARCH RECORD, 2012, (2313) : 181 - 188
  • [26] Flexural behavior of beams strengthened with GFRP bars and high-performance fiber-reinforced concrete
    Su, Yan-li
    Shang, Jia-qi
    Zhang, Pu
    Xu, Shi-zhan
    Sheikh, Shamim Ahmed
    STRUCTURAL CONCRETE, 2024, 25 (02) : 1208 - 1222
  • [27] Strain Softening of High-Performance Fiber-Reinforced Cementitious Composites in Uniaxial Compression
    Kwon, Seung-Hee
    Lee, Jung-Soo
    Koh, Kyungtaek
    Kim, Hyeong-Ki
    INTERNATIONAL JOURNAL OF CONCRETE STRUCTURES AND MATERIALS, 2024, 18 (01)
  • [28] Compressive and flexural properties of ultra-high performance fiber-reinforced cementitious composite: The effect of coarse aggregate
    Wu, Fanghong
    Xu, Lihua
    Chi, Yin
    Zeng, Yanqin
    Deng, Fangqian
    Chen, Qian
    COMPOSITE STRUCTURES, 2020, 236 (236)
  • [29] Effect of engineered cementitious composite on the bond behavior between fiber-reinforced polymer and concrete
    Sui, Lili
    Luo, Minshen
    Yu, Kequan
    Xing, Feng
    Li, Pengda
    Zhou, Yingwu
    Chen, Cheng
    COMPOSITE STRUCTURES, 2018, 184 : 775 - 788
  • [30] Influence of Secondary Reinforcement on Behaviour of Corbels with Various Types of High-Performance Fiber-Reinforced Cementitious Composites
    Zin, Nasuha Md
    Al-Fakih, Amin
    Nikbakht, Ehsan
    Teo, Wee
    Gad, Mahmoud Anwar
    MATERIALS, 2019, 12 (24)