On bipartite unitary matrices generating subalgebra-preserving quantum operations

被引:13
作者
Benoist, Tristan [1 ]
Nechita, Ion [1 ]
机构
[1] CNRS, Phys Theor Lab, Toulouse, France
关键词
Quantum channel; Completely positive map; Invariant sub-algebra; Quantum Latin square; Sinkhorn algorithm; Operator scaling; DOUBLY STOCHASTIC MATRICES; STATE REDUCTION; CONVERGENCE; MODELS;
D O I
10.1016/j.laa.2017.01.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the structure of bipartite unitary operators which generate via the Stinespring dilation theorem, quantum operations preserving some given matrix algebra, independently of the ancilla state. We characterize completely the unitary operators preserving diagonal, block-diagonal, and tensor product algebras. Some unexpected connections with the theory of quantum Latin squares are explored, and we introduce and study a Sinkhorn-like algorithm used to randomly generate quantum Latin squares. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:70 / 103
页数:34
相关论文
共 23 条
[1]   Quantum computing and hidden variables [J].
Aaronson, S .
PHYSICAL REVIEW A, 2005, 71 (03)
[2]   Martingale models for quantum state reduction [J].
Adler, SL ;
Brody, DC ;
Brun, TA ;
Hughston, LP .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (42) :8795-8820
[3]   Flat matrix models for quantum permutation groups [J].
Banica, Teodor ;
Nechita, Ion .
ADVANCES IN APPLIED MATHEMATICS, 2017, 83 :24-46
[4]  
Bardet I., ARXIV150904849
[5]   Repeated Quantum Non-Demolition Measurements: Convergence and Continuous Time Limit [J].
Bauer, Michel ;
Benoist, Tristan ;
Bernard, Denis .
ANNALES HENRI POINCARE, 2013, 14 (04) :639-679
[6]   Convergence of repeated quantum nondemolition measurements and wave-function collapse [J].
Bauer, Michel ;
Bernard, Denis .
PHYSICAL REVIEW A, 2011, 84 (04)
[7]  
Benoist T., COMPUTER IMPLEMENTAT
[8]   Large Time Behavior and Convergence Rate for Quantum Filters Under Standard Non Demolition Conditions [J].
Benoist, Tristan ;
Pellegrini, Clement .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 331 (02) :703-723
[9]   The distribution of quadratic forms in a normal system, with applications to the analysis of covariance. [J].
Cochran, WG .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1934, 30 :178-191
[10]  
Davidson K. R., 1996, AM MATH SOC