The 3-cocycles of the Alexander quandles Fq[T]/(T-ω)

被引:13
作者
Mochizuki, Takuro [1 ]
机构
[1] Kyoto Univ, Dept Math, Kyoto 6068502, Japan
关键词
quandle; cohomology; knot;
D O I
10.2140/agt.2005.5.183
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We determine the third cohomology of Alexander quandles of the form F-q[T]/(T-omega), where F-q denotes the finite field of order q and omega is an element of F-q which is neither 0 nor 1. As a result, we obtain many concrete examples of non-trivial 3-cocycles.
引用
收藏
页码:183 / 205
页数:23
相关论文
共 9 条
[1]   Quandle cohomology and state-sum invariants of knotted curves and surfaces [J].
Carter, JS ;
Jelsovsky, D ;
Kamada, S ;
Langford, L ;
Saito, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (10) :3947-3989
[2]   Computations of quandle cocycle invariants of knotted curves and surfaces [J].
Carter, JS ;
Jelsovsky, D ;
Kamada, S ;
Saito, M .
ADVANCES IN MATHEMATICS, 2001, 157 (01) :36-94
[3]  
Carter JS, 2001, J PURE APPL ALGEBRA, V157, P135
[4]   On rack cohomology [J].
Etingof, P ;
Graña, M .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2003, 177 (01) :49-59
[5]  
Kawauchi A., 1996, SURVEY KNOT THEORY
[6]   Some calculations of cohomology groups of finite Alexander quandles [J].
Mochizuki, T .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2003, 179 (03) :287-330
[7]   The 2-twist-spun trefoil has the triple point number four [J].
Satoh, S ;
Shima, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (03) :1007-1024
[8]  
SATOH S, TRIPLE POINT NUMBERS
[9]  
[No title captured]