Compliance with Good Manufacturing Practice in the Assessment of Immunomodulation Potential of Clinical Grade Multipotent Mesenchymal Stromal Cells Derived from Wharton's Jelly

被引:25
作者
Grau-Vorster, Marta [1 ,2 ]
Rodriguez, Luciano [1 ]
del Mazo-Barbara, Anna [1 ]
Mirabel, Clementine [1 ]
Blanco, Margarita [1 ]
Codinach, Margarita [1 ]
Gomez, Susana G. [1 ]
Querol, Sergi [1 ]
Garcia-Lopez, Joan [1 ,3 ]
Vives, Joaquim [1 ,4 ,5 ]
机构
[1] Banc Sang & Teixits, Edif Dr Freder Duran & Jorda,Passeig Taulat 116, Barcelona 08005, Spain
[2] Univ Autonoma Barcelona, Transfus Med Grp, VHIR, Passeig Vall dHebron 129-139, Barcelona, Spain
[3] Univ Autonoma Barcelona, Transfus Med & Cellular & Tissue Therapies, Campus UAB, Barcelona 08035, Spain
[4] Univ Autonoma Barcelona, Musculoskeletal Tissue Engn Grp, Vall dHebron Res Inst, Passeig Vall dHebron 129-139, Barcelona 08035, Spain
[5] Univ Autonoma Barcelona, Dept Med, Passeig Vall dHebron 129-139, Barcelona 08035, Spain
关键词
multipotent mesenchymal stromal cell; immunomodulation; proliferation assay; cellular therapy; cell culture; good manufacturing practice; quality by design; STEM-CELLS; INTERNATIONAL-SOCIETY; POTENCY ASSAY; QUALIFICATION; SYSTEMS;
D O I
10.3390/cells8050484
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Background: The selection of assays suitable for testing the potency of clinical grade multipotent mesenchymal stromal cell (MSC)-based products and its interpretation is a challenge for both developers and regulators. Here, we present a bioprocess design for the production of Wharton's jelly (WJ)-derived MSCs and a validated immunopotency assay approved by the competent regulatory authority for batch release together with the study of failure modes in the bioprocess with potential impact on critical quality attributes (CQA) of the final product. Methods: The lymphocyte proliferation assay was used for determining the immunopotency of WJ-MSCs and validated under good manufacturing practices (GMP). Moreover, failure mode effects analysis (FMEA) was used to identify and quantify the potential impact of different unexpected situations on the CQA. Results: A production process based on a two-tiered cell banking strategy resulted in batches with sufficient numbers of cells for clinical use in compliance with approved specifications including MSC identity (expressing CD73, CD90, CD105, but not CD31, CD45, or HLA-DR). Remarkably, all batches showed high capacity to inhibit the proliferation of activated lymphocytes. Moreover, implementation of risk management tools led to an in-depth understanding of the manufacturing process as well as the identification of weak points to be reinforced. Conclusions: The bioprocess design showed here together with detailed risk management and the use of a robust method for immunomodulation potency testing allowed for the robust production of clinical-grade WJ-MSCs under pharmaceutical standards.
引用
收藏
页数:13
相关论文
共 25 条
[1]   Wharton's Jelly Mesenchymal Stem Cells as Candidates for Beta Cells Regeneration: Extending the Differentiative and Immunomodulatory Benefits of Adult Mesenchymal Stem Cells for the Treatment of Type 1 Diabetes [J].
Anzalone, Rita ;
Lo Iacono, Melania ;
Loria, Tiziana ;
Di Stefano, Antonino ;
Giannuzzi, Pantaleo ;
Farina, Felicia ;
La Rocca, Giampiero .
STEM CELL REVIEWS AND REPORTS, 2011, 7 (02) :342-363
[2]   The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine [J].
Bianco, Paolo ;
Cao, Xu ;
Frenette, Paul S. ;
Mao, Jeremy J. ;
Robey, Pamela G. ;
Simmons, Paul J. ;
Wang, Cun-Yu .
NATURE MEDICINE, 2013, 19 (01) :35-42
[3]   Production and quality testing of multipotent mesenchymal stromal cell therapeutics for clinical use [J].
Bieback, Karen ;
Kuci, Selim ;
Schaefer, Richard .
TRANSFUSION, 2019, 59 (06) :2164-2173
[4]   Potency assay development for cellular therapy products: an ISCT review of the requirements and experiences in the industry [J].
Bravery, Christopher A. ;
Carmen, Jessica ;
Fong, Timothy ;
Oprea, Wanda ;
Hoogendoorn, Karin H. ;
Woda, Juliana ;
Burger, Scott R. ;
Rowley, Jon A. ;
Bonyhadi, Mark L. ;
Van't Hof, Wouter .
CYTOTHERAPY, 2013, 15 (01) :9-19
[5]  
Cagliani Joaquin, 2017, J Stem Cell Regen Biol, V3, DOI 10.15436/2471-0598.17.022
[6]   Design and validation of a consistent and reproducible manufacture process for the production of clinical-grade bone marrow-derived multipotent mesenchymal stromal cells [J].
Codinach, Margarita ;
Blanco, Margarita ;
Ortega, Isabel ;
Lloret, Mireia ;
Reales, Laura ;
Coca, Maria Isabel ;
Torrents, Silvia ;
Doral, Manel ;
Oliver-Vila, Irene ;
Requena-Montero, Miriam ;
Vives, Joaquim ;
Garcia-Lopez, Joan .
CYTOTHERAPY, 2016, 18 (09) :1197-1208
[7]   Cell, tissue and gene products with marketing authorization in 2018 worldwide [J].
Cuende, Natividad ;
Rasko, John E. J. ;
Koh, Mickey B. C. ;
Dominici, Massimo ;
Ikonomou, Laertis .
CYTOTHERAPY, 2018, 20 (11) :1401-1413
[8]   Qualification of computerized monitoring systems in a cell therapy facility compliant with the good manufacturing practices [J].
del Mazo-Barbara, Anna ;
Mirabel, Clementine ;
Nieto, Valentin ;
Reyes, Blanca ;
Garcia-Lopez, Joan ;
Oliver-Vila, Irene ;
Vives, Joaquim .
REGENERATIVE MEDICINE, 2016, 11 (06) :521-528
[9]   Streamlining the qualification of computerized systems in GxP-compliant academic cell therapy facilities [J].
del Mazo-Barbara, Anna ;
Nieto, Valentin ;
Mirabel, Clementine ;
Reyes, Blanca ;
Garcia-Lopez, Joan ;
Oliver-Vila, Irene ;
Vives, Joaquim .
CYTOTHERAPY, 2016, 18 (09) :1237-1239
[10]   Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement [J].
Dominici, M. ;
Le Blanc, K. ;
Mueller, I. ;
Slaper-Cortenbach, I. ;
Marini, F. C. ;
Krause, D. S. ;
Deans, R. J. ;
Keating, A. ;
Prockop, D. J. ;
Horwitz, E. M. .
CYTOTHERAPY, 2006, 8 (04) :315-317