Ensemble learning-based CNN for textile fabric defects classification

被引:14
|
作者
Zhao, Xueqing [1 ]
Zhang, Min [1 ]
Zhang, Junjun [1 ]
机构
[1] Xian Polytech Univ, Shaanxi Key Lab Clothing Intelligence, Natl & Local Joint Engn Res Ctr Adv Networking &, Sch Comp Sci, Xian, Peoples R China
基金
中国国家自然科学基金;
关键词
Ensemble learning; Convolutional neural network; Transfer learning; Small simples; Textile fabric defect classification; ELM;
D O I
10.1108/IJCST-12-2019-0188
中图分类号
TB3 [工程材料学]; TS1 [纺织工业、染整工业];
学科分类号
0805 ; 080502 ; 0821 ;
摘要
Purpose Classifying the types of fabric defects in the textile industry requires a way to effectively detect. The traditional textile fabric defects detection method is human eyes, which performs very low efficiency and high cost. Therefore, how to improve the classification accuracy of textile fabric defects by using current artificial intelligence and to better meet the needs in the textile industry, the purpose of this article is to develop a method to improve the accuracy of textile fabric defects classification. Design/methodology/approach To improve the accuracy of textile fabric defects classification, an ensemble learning-based convolutional neural network (CNN) method in terms of textile fabric defects classification (short for ECTFDC) on an enhanced TILDA database is used. ECTFDC first adopts ensemble learning-based model to classify five types of fabric defects from TILDA. Subsequently, ECTFDC extracts features of fabric defects via an ensemble multiple convolutional neural network model and obtains parameters by using transfer learning method. Findings The authors applied ECTFDC on an enhanced TILDA database to improve the robustness and generalization ability of the proposed networks. Experimental results show that ECTFDC outperforms the other networks, the precision and recall rates are 97.8%, 97.68%, respectively. Originality/value The ensemble convolutional neural network textile fabric defect classification method in this paper can quickly and effectively classify textile fabric defect categories; it can reduce the production cost of textiles and it can alleviate the visual fatigue of inspectors working for a long time.
引用
收藏
页码:664 / 678
页数:15
相关论文
共 50 条
  • [1] A novel CNN ensemble framework for bearing surface defects classification based on transfer learning
    Ma, Jiajun
    Liu, Maolin
    Hu, Songyu
    Fu, Jianzhong
    Chen, Gui
    Yang, Aixi
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (02)
  • [2] Feature fusion and Ensemble learning-based CNN model for mammographic image classification
    Ul Haq, Imran
    Ali, Haider
    Wang, Hong Yu
    Lei, Cui
    Ali, Hazrat
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2022, 34 (06) : 3310 - 3318
  • [3] Lung Cancer Classification using Reinforcement Learning-based Ensemble Learning
    Luo, Shengping
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (08) : 1112 - 1122
  • [4] Adapted Deep Ensemble Learning-Based Voting Classifier for Osteosarcoma Cancer Classification
    Walid, Md. Abul Ala
    Mollick, Swarnali
    Shill, Pintu Chandra
    Baowaly, Mrinal Kanti
    Islam, Md. Rabiul
    Ahamad, Md. Martuza
    Othman, Manal A.
    Samad, Md Abdus
    DIAGNOSTICS, 2023, 13 (19)
  • [5] Gait classification through CNN-based ensemble learning
    Xiuhui Wang
    Ke Yan
    Multimedia Tools and Applications, 2021, 80 : 1565 - 1581
  • [6] Gait classification through CNN-based ensemble learning
    Wang, Xiuhui
    Yan, Ke
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (01) : 1565 - 1581
  • [7] The Relative Performance of Deep Learning and Ensemble Learning for Textile Object Classification
    Yildirim, Pelin
    Birant, Derya
    2018 3RD INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), 2018, : 22 - 26
  • [8] Movements Classification of Multi-Channel sEMG Based on CNN and Stacking Ensemble Learning
    Shen, Shu
    Gu, Kang
    Chen, Xin-Rong
    Yang, Ming
    Wang, Ru-Chuan
    IEEE ACCESS, 2019, 7 : 137489 - 137500
  • [9] Deep Learning-Based Classification of Weld Surface Defects
    Zhu, Haixing
    Ge, Weimin
    Liu, Zhenzhong
    APPLIED SCIENCES-BASEL, 2019, 9 (16):
  • [10] Detection of minute defects using transfer learning-based CNN models
    Nakashima, Kento
    Nagata, Fusaomi
    Ochi, Hiroaki
    Otsuka, Akimasa
    Ikeda, Takeshi
    Watanabe, Keigo
    Habib, Maki K.
    ARTIFICIAL LIFE AND ROBOTICS, 2021, 26 (01) : 35 - 41