Periodic orbits of mechanical systems with homogeneous polynomial terms of degree five

被引:3
作者
Castro Ortega, Alberto [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Fac Ciencias, Dept Matemat, Mexico City 04510, DF, Mexico
关键词
Averaging method; Polynomial potential; Periodic solutions; CHAOS;
D O I
10.1007/s10509-015-2612-0
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this work the existence of periodic solutions is studied for the Hamiltonian functions H = 1/2 (p(X)(2) + p(Y)(2) + X-2 + Y-2) + a/5 X-5 + bX(3)Y(2), where the first term consist of a harmonic oscillator and the second term are homogeneous polynomials of degree 5 defined by two real parameters a and b. Using the averaging method of second order we provide the sufficient conditions on the parameters to guarantee the existence of periodic solutions for positive energy and we study the stability of these periodic solutions.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 15 条
  • [1] Boccaletti D, 1999, THEORY OF ORBITS, V2
  • [2] Averaging methods for finding periodic orbits via Brouwer degree
    Buica, A
    Llibre, J
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2004, 128 (01): : 7 - 22
  • [3] CHAOS IN A QUARTIC DYNAMIC-MODEL
    CARANICOLAS, N
    VOZIKIS, C
    [J]. CELESTIAL MECHANICS, 1987, 40 (01): : 35 - 49
  • [4] Caranicolas ND, 1999, ASTRON ASTROPHYS, V349, P70
  • [5] Periodic Solutions, Stability and Non-Integrability in a Generalized Henon-Heiles Hamiltonian System
    Carrasco, Dante
    Vidal, Claudio
    [J]. JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2013, 20 (02) : 199 - 213
  • [6] Contopulos G., 2002, ORDEN CHAOS DYNAMICA
  • [7] On the dynamics of mechanical systems with homogeneous polynomial potentials of degree 4
    Falconi, M.
    Lacomba, E. A.
    Vidal, C.
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2007, 38 (02): : 301 - 333
  • [8] Falconi M., 1996, CONT MATH, V198, P181
  • [9] On the Dynamics of Mechanical Systems with the Homogeneous Polynomial Potential V = ax 4 + cx 2 y 2
    Falconi, Manuel
    Lacomba, Ernesto
    Vidal, Claudio
    [J]. JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2009, 21 (03) : 527 - 554
  • [10] INTEGRABILITY OF HAMILTONIANS WITH 3RD-DEGREE AND 4TH-DEGREE POLYNOMIAL POTENTIALS
    GRAMMATICOS, B
    DORIZZI, B
    RAMANI, A
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1983, 24 (09) : 2289 - 2295