Norm-parallelism in the geometry of Hilbert C*-modules

被引:22
作者
Zamani, Ali [1 ]
Moslehian, Mohammad Sal [1 ]
机构
[1] Ferdowsi Univ Mashhad, Dept Pure Math, Ctr Excellence Anal Algebra Struct, POB 1159, Mashhad 91775, Iran
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2016年 / 27卷 / 01期
关键词
Hilbert C*-module; State; Parallelism; Orthogonality; C*-algebra; BIRKHOFF-JAMES ORTHOGONALITY; OPERATORS;
D O I
10.1016/j.indag.2015.10.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Utilizing the Birkhoff-James orthogonality, we present some characterizations of the norm-parallelism for elements of B (H) defined on a finite dimensional Hilbert space, elements of a Hilbert C*-module over the C*-algebra of compact operators and elements of an arbitrary C*-algebra. We also consider the characterization of norm parallelism problem for operators on a finite dimensional Hilbert space when the operator norm is replaced by the Schatten p-norm. Some applications and generalizations are discussed for certain elements of a Hilbert C*-module. (C) 2015 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:266 / 281
页数:16
相关论文
共 14 条
[1]   UNITARY APPROXIMATION OF POSITIVE OPERATORS [J].
AIKEN, JG ;
ERDOS, JA ;
GOLDSTEIN, JA .
ILLINOIS JOURNAL OF MATHEMATICS, 1980, 24 (01) :61-72
[2]   A STRONG VERSION OF THE BIRKHOFF-JAMES ORTHOGONALITY IN HILBERT C*-MODULES [J].
Arambasic, Ljiljana ;
Rajic, Rajna .
ANNALS OF FUNCTIONAL ANALYSIS, 2014, 5 (01) :109-120
[3]   The Birkhoff-James orthogonality in Hilbert C*-modules [J].
Arambasic, Ljiljana ;
Rajic, Rajna .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (07) :1913-1929
[4]   Orthogonality of matrices and some distance problems [J].
Bhatia, R ;
Semrl, P .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 287 (1-3) :77-85
[5]   Characterization of Birkhoff-James orthogonality [J].
Bhattacharyya, Tirthankar ;
Grover, Priyanka .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 407 (02) :350-358
[6]   Cauchy-Schwarz inequality in semi-inner product C*-modules via polar decomposition [J].
Fujii, J. I. ;
Fujii, M. ;
Moslehian, M. S. ;
Seo, Y. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 394 (02) :835-840
[7]  
Lance E. C., 1995, Hilbert C*-Modules. A toolkit for operator algebraists, V210
[8]  
Manuilov V. M., 2005, Translations of Mathematical Monographs, V226
[9]  
Murphy G. J., 1990, C*-algebras and operator theory, DOI DOI 10.1016/C2009-0-22289-6
[10]  
Nakamoto R., 2002, SCI MATH JPN, V55, P463