ON THE EULER PRODUCT OF THE DEDEKIND ZETA FUNCTION

被引:0
|
作者
Li, Xian-Jin [1 ]
机构
[1] Brigham Young Univ, Dept Math, Provo, UT 84602 USA
关键词
Dirichlet series; Euler product; zeta function;
D O I
10.1142/S1793042109002109
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is well known that the Euler product formula for the Riemann zeta function zeta(s) is still valid for R(s) = 1 and s not equal 1. In this paper, we extend this result to zeta functions of number fields. In particular, we show that the Dedekind zeta function zeta(k)(s) for any algebraic number field k can be written as the Euler product on the line R(s) = 1 except at the point s = 1. As a corollary, we obtain the Euler product formula on the line R(s) = 1 for Dirichlet L-functions L(s, chi) of real characters.
引用
收藏
页码:293 / 301
页数:9
相关论文
共 50 条
  • [41] On complete monotonicity of the Riemann zeta function
    Ruiming Zhang
    Journal of Inequalities and Applications, 2014
  • [42] On the zeta-function of a polynomial at infinity
    Gusein-Zade, SM
    Luengo, I
    Melle-Hernández, A
    BULLETIN DES SCIENCES MATHEMATIQUES, 2000, 124 (03): : 213 - 224
  • [43] On a zeta function associated with automata and codes
    Lavallee, Sylvain
    Reutenauer, Christophe
    THEORETICAL COMPUTER SCIENCE, 2007, 381 (1-3) : 266 - 273
  • [44] A zeta function for the BTZ black hole
    Williams, FL
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2003, 18 (12): : 2205 - 2209
  • [45] Spectral zeta function of symmetric fractals
    Teplyaev, A
    FRACTAL GEOMETRY AND STOCHASTICS III, 2004, 57 : 245 - 262
  • [46] On universality of the Lerch zeta-function
    Laurincikas, A.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2012, 276 (01) : 167 - 175
  • [47] SUBCONVEXITY OF SHINTANI?S ZETA FUNCTION
    Hough, Robert D.
    Lee, Eun Hye
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 375 (11) : 8277 - 8295
  • [48] Inequalities for Riemann's zeta function
    Alzer, Horst
    PORTUGALIAE MATHEMATICA, 2009, 66 (03) : 321 - 327
  • [49] Ruelle zeta function at zero for surfaces
    Semyon Dyatlov
    Maciej Zworski
    Inventiones mathematicae, 2017, 210 : 211 - 229
  • [50] The zeta function of the Laplacian on certain fractals
    Derfel, Gregory
    Grabner, Peter J.
    Vogl, Fritz
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (02) : 881 - 897