ON THE EULER PRODUCT OF THE DEDEKIND ZETA FUNCTION

被引:0
|
作者
Li, Xian-Jin [1 ]
机构
[1] Brigham Young Univ, Dept Math, Provo, UT 84602 USA
关键词
Dirichlet series; Euler product; zeta function;
D O I
10.1142/S1793042109002109
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is well known that the Euler product formula for the Riemann zeta function zeta(s) is still valid for R(s) = 1 and s not equal 1. In this paper, we extend this result to zeta functions of number fields. In particular, we show that the Dedekind zeta function zeta(k)(s) for any algebraic number field k can be written as the Euler product on the line R(s) = 1 except at the point s = 1. As a corollary, we obtain the Euler product formula on the line R(s) = 1 for Dirichlet L-functions L(s, chi) of real characters.
引用
收藏
页码:293 / 301
页数:9
相关论文
共 50 条
  • [21] The Probabilistic Zeta Function
    Benesh, Bret
    COMPUTATIONAL GROUP THEORY AND THE THEORY OF GROUPS, II, 2010, 511 : 1 - 9
  • [22] Profinite groups in which the probabilistic zeta function coincides with the subgroup zeta function
    Damian, E.
    Lucchini, A.
    JOURNAL OF ALGEBRA, 2014, 402 : 92 - 119
  • [23] The Spectral Zeta Function for Laplace Operators on Warped Product Manifolds of the type I ×f N
    Guglielmo Fucci
    Klaus Kirsten
    Communications in Mathematical Physics, 2013, 317 : 635 - 665
  • [24] A generalized square of the zeta function. Spectral decompositions
    Vinogradov A.I.
    Journal of Mathematical Sciences, 2006, 137 (2) : 4617 - 4633
  • [25] Functional equation for the hyperbolic zeta function of integer lattices
    M. N. Dobrovol’skii
    Doklady Mathematics, 2007, 75 : 53 - 54
  • [26] Euler sine product and the continued fraction of π
    Verma, Rahul
    Puneeth, V.
    Kureethara, Joseph Varghese
    Sharma, Ashish
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2024, 30 (03) : 463 - 478
  • [27] Zeta Function on a Generalised Cone
    Guido Cognola
    Sergio Zerbini
    Letters in Mathematical Physics, 1997, 42 : 95 - 101
  • [28] Analytic Surgery of the Zeta Function
    Klaus Kirsten
    Paul Loya
    Communications in Mathematical Physics, 2012, 310 : 181 - 215
  • [29] The zeta function of a simplicial complex
    Anders Björner
    Karanbir S. Sarkaria
    Israel Journal of Mathematics, 1998, 103 : 29 - 40
  • [30] Pseudomoments of the Riemann zeta function
    Bondarenko, Andriy
    Brevig, Ole Fredrik
    Saksman, Eero
    Seip, Kristian
    Zhao, Jing
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2018, 50 (04) : 709 - 724