GROUND STATE SOLUTIONS FOR p-BIHARMONIC EQUATIONS

被引:0
|
作者
Liu, Xiaonan [1 ]
Chen, Haibo [1 ]
Almuaalemi, Belal [1 ]
机构
[1] Cent S Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
p-biharmonic equations; Nehari manifold; ground state solution; NONLINEAR ELLIPTIC PROBLEMS; SIGN-CHANGING SOLUTIONS; MULTIPLE SOLUTIONS; CRITICAL GROWTH; R-N;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we study the p-biharmonic equation Delta(2)(p)u + V (x) vertical bar u vertical bar(p-2) u = f (x,u); x is an element of R-N, where Delta(2)(p)u = Delta (vertical bar Delta(u)vertical bar(p-2) Delta u) is the p-biharmonic operator. When V (x) and f (x,u) satisfy some conditions, we prove that the above equations have Nehari-type ground state solutions.
引用
收藏
页数:9
相关论文
共 50 条
  • [11] An exact estimate result for p-biharmonic equations with Hardy potential and negative exponents
    Sang, Yanbin
    Guo, Siman
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)
  • [12] Singular p-biharmonic problem with the Hardy potential
    Drissi, Amor
    Ghanmi, Abdeljabbar
    Repovs, Dusan D.
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2024, 29 (04): : 762 - 782
  • [13] The Ground State Solutions to a Class of Biharmonic Choquard Equations on Weighted Lattice Graphs
    Liu, Yang
    Zhang, Mengjie
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2024, 50 (01)
  • [14] The Ground State Solutions to a Class of Biharmonic Choquard Equations on Weighted Lattice Graphs
    Yang Liu
    Mengjie Zhang
    Bulletin of the Iranian Mathematical Society, 2024, 50
  • [15] Ground-state solution for a class of biharmonic equations including critical exponent
    Liu, Hongliang
    Chen, Haibo
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (06): : 3333 - 3343
  • [16] Existence of ground state for coupled system of biharmonic Schrodinger equations
    Wang, Yanhua
    Liu, Min
    Wei, Gongming
    AIMS MATHEMATICS, 2022, 7 (03): : 3719 - 3730
  • [17] An exact estimate result for p-biharmonic equations with Hardy potential and negative exponents
    Yanbin Sang
    Siman Guo
    Journal of Inequalities and Applications, 2019
  • [18] EXISTENCE OF TWO SOLUTIONS FOR A NAVIER BOUNDARY VALUE PROBLEM INVOLVING THE p-BIHARMONIC
    Shen, Ying
    Zhang, Jihui
    DIFFERENTIAL EQUATIONS & APPLICATIONS, 2011, 3 (03): : 399 - 414
  • [19] Infinitely many solutions for a nonlinear Navier problem involving the p-biharmonic operator
    Cammaroto, Filippo
    CUBO-A MATHEMATICAL JOURNAL, 2022, 24 (03): : 501 - 519
  • [20] MULTIPLE SOLUTIONS FOR A PERTURBED NAVIER BOUNDARY VALUE PROBLEM INVOLVING THE p-BIHARMONIC
    Ding, L.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2015, 41 (01) : 269 - 280