A novel Kernel Method for clustering

被引:1
作者
Camastra, Francesco [1 ]
Verri, Alessandro [1 ]
机构
[1] Univ Genoa, INFM, DISI, I-16146 Genoa, Italy
来源
BIOLOGICAL AND ARTIFICIAL INTELLIGENCE ENVIRONMENTS | 2005年
关键词
Kernel Methods; clustering; K-Means;
D O I
10.1007/1-4020-3432-6_29
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Kernel Methods are algorithms that implicitly perform a nonlinear mapping of the input data to a high dimensional Feature Space. In this paper, we present a novel Kernel Method, Kernel K-Means for clustering problems. Unlike other popular clustering algorithms that yield piecewise linear borders among data, Kernel K-Means allows to get nonlinear separation surfaces in the data. Kernel K-Means compares better with popular clustering algorithms, on a synthetic dataset and two UCI real data benchmarks.
引用
收藏
页码:245 / 250
页数:6
相关论文
共 9 条