Optimal control and synchronization of Lorenz system with complete unknown parameters

被引:19
作者
El-Gohary, Awad [1 ]
Sarhan, Ammar [1 ]
机构
[1] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
关键词
D O I
10.1016/j.chaos.2005.09.025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper discusses the optimal control and synchronization problems of Lorenz systems with fully unknown parameters. Based on the Liapunov-Bellman technique, the optimal control law with three-state variables feedback is derived such that the trajectory of the Lorenz system is optimally stabilized to an equilibrium point of the uncontrolled system. Further, another optimal control law is also applied to achieve the state synchronization of two identical Lorenz systems. Numerical results to demonstrate the effectiveness of the proposed control scheme. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1122 / 1132
页数:11
相关论文
共 19 条
  • [1] Synchronization of two Lorenz systems using active control
    Bai, EW
    Lonngren, KE
    [J]. CHAOS SOLITONS & FRACTALS, 1997, 8 (01) : 51 - 58
  • [2] SYNCHRONIZING CHAOTIC CIRCUITS
    CARROLL, TL
    PECORA, LM
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1991, 38 (04): : 453 - 456
  • [3] Optimal synchronization of Rossler system with complete uncertain parameters
    El-Gohary, A
    [J]. CHAOS SOLITONS & FRACTALS, 2006, 27 (02) : 345 - 355
  • [4] Optimal control of Lorenz system during different time intervals
    El-Gohary, A
    Bukhari, F
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2003, 144 (2-3) : 337 - 351
  • [5] FRANCIS C, 1987, CHAOTIC VIBRATIONAL
  • [6] GARRIDO L, 1983, LECT NOTES PHYS DYNA
  • [7] LASALLE H, 1967, DIFFERENTIAL EQUATIO
  • [8] LASKHMAANN M, 1965, NONLINEAR DYNAMICS I
  • [9] Adaptive control and synchronization of Lorenz systems
    Liao, TL
    Lin, SH
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1999, 336 (06): : 925 - 937
  • [10] Adaptive synchronization of two Lorenz systems
    Liao, TL
    [J]. CHAOS SOLITONS & FRACTALS, 1998, 9 (09) : 1555 - 1561