Automated analysis of DNA hybridization images for high-throughput genomics

被引:2
|
作者
Bhandarkar, SM [1 ]
Jiang, TZ [1 ]
Verma, K [1 ]
Li, N [1 ]
机构
[1] Univ Georgia, Dept Comp Sci, Boyd Grad Studies Res Ctr 415, Athens, GA 30602 USA
关键词
DNA hybridization; physical mapping; image analysis; high-throughput genomics; Bayesian classification;
D O I
10.1007/s00138-003-0134-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The design and implementation of a computer vision system called DNAScan for the automated analysis of DNA hybridization images is presented. The hybridization of a DNA clone with a radioactively tagged probe manifests itself as a spot on the hybridization membrane. The imaging of the hybridization membranes and the automated analysis of the resulting images are imperative for high-throughput genomics experiments. A recursive segmentation procedure is designed and implemented to extract spotlike features in the hybridization images in the presence of a highly inhomogeneous background. Positive hybridization signals (hits) are extracted from the spotlike features using grouping and decomposition algorithms based on computational geometry. A mathematical model for the positive hybridization patterns and a Bayesian pattern classifier based on shape-based moments are proposed and implemented to distinguish between the clone-probe hybridization signals. Experimental results on real hybridization membrane images are presented.
引用
收藏
页码:121 / 138
页数:18
相关论文
共 50 条
  • [21] Automated high-throughput Wannierisation
    Valerio Vitale
    Giovanni Pizzi
    Antimo Marrazzo
    Jonathan R. Yates
    Nicola Marzari
    Arash A. Mostofi
    npj Computational Materials, 6
  • [22] Automated high-throughput Wannierisation
    Vitale, Valerio
    Pizzi, Giovanni
    Marrazzo, Antimo
    Yates, Jonathan R.
    Marzari, Nicola
    Mostofi, Arash A.
    NPJ COMPUTATIONAL MATERIALS, 2020, 6 (01)
  • [23] Automated segmentation and classification of zebrafish histology images for high-throughput phenotyping
    Canada, Brian
    Thomas, Georgia
    Cheng, Keith
    Wang, James Z.
    2007 IEEE/NIH LIFE SCIENCE SYSTEMS AND APPLICATIONS WORKSHOP, 2007, : 245 - +
  • [24] Automated high-throughput RNA analysis by capillary electrophoresis
    Khandurina, J
    Chang, HS
    Wanders, B
    Guttman, A
    BIOTECHNIQUES, 2002, 32 (06) : 1226 - +
  • [25] High-throughput DNA analysis by microchip electrophoresis
    Chen, L
    Ren, JC
    COMBINATORIAL CHEMISTRY & HIGH THROUGHPUT SCREENING, 2004, 7 (01) : 29 - 43
  • [26] ProkEvo: an automated, reproducible, and scalable framework for high-throughput bacterial population genomics analyses
    Pavlovikj, Natasha
    Gomes-Neto, Joao Carlos
    Deogun, Jitender S.
    Benson, Andrew K.
    PEERJ, 2021, 9
  • [27] High-Throughput Automated Extraction of DNA and RNA from FFPE Samples
    Lee, M.
    Cheng, A. M.
    Fang, X.
    Cordero, A. R.
    Wanjala, J. N.
    Matsuguchi, T.
    Catalano, J. P.
    Patel, M. R.
    Lung, K.
    Foo, C. K.
    Pazarentzos, E.
    Giannikopoulos, P.
    JOURNAL OF MOLECULAR DIAGNOSTICS, 2016, 18 (06): : 1036 - 1037
  • [28] High-throughput isolation of circulating tumor DNA: a comparison of automated platforms
    van Dessel, Lisanne F.
    Vitale, Silvia R.
    Helmijr, Jean C. A.
    Wilting, Saskia M.
    van der Vlugt-Daane, Michelle
    Oomen-de Hoop, Esther
    Sleijfer, Stefan
    Martens, John W. M.
    Jansen, Maurice P. H. M.
    Lolkema, Martijn P.
    MOLECULAR ONCOLOGY, 2019, 13 (02) : 392 - 402
  • [29] Genomics - from Neanderthals to high-throughput sequencing
    Matthew John Wakefield
    Genome Biology, 7
  • [30] High-throughput measurements for functional genomics of milk
    Martens, H.
    Kohler, A.
    Afseth, N. K.
    Wold, J. P.
    Hersleth, M.
    Berget, I.
    Adnoy, T.
    Skaugen, M.
    Isaksson, T.
    Vegarud, G.
    Criscione, A.
    Mevik, B. H.
    Frost, M. B.
    Randby, A. T.
    Prestlokken, E.
    Berg, P.
    Kent, M.
    Lien, S.
    Omholt, S. W.
    JOURNAL OF ANIMAL AND FEED SCIENCES, 2007, 16 : 172 - 189