The Tammes Problem for N=14

被引:30
作者
Musin, Oleg R. [1 ]
Tarasov, Alexey S. [2 ]
机构
[1] Univ Texas Brownsville, Brownsville, TX 78520 USA
[2] IITP RAS, Moscow, Russia
基金
美国国家科学基金会;
关键词
Tammes problem; sphere packing; irreducible contact graph; 13; SPHERES; DIMENSIONS; BOUNDS; NUMBER; PROOF;
D O I
10.1080/10586458.2015.1022842
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Tammes problem is to find the arrangement of N points on a unit sphere which maximizes the minimum distance between any two points. This problem is presently solved for several values of N, namely for N = 3, 4, 6, 12 by L. Fejes Toth (1943); for N = 5, 7, 8, 9 by Schutte and van der Waerden (1951); for N = 10, 11 by Danzer (1963); and for N = 24 by Robinson (1961). Recently, we solved the Tammes problem for N = 13. The optimal configuration of 14 points was conjectured more than 60 years ago. In this article, we give a solution for this long-standing open problem in geometry. Our computer-assisted proof relies on an enumeration of the irreducible contact graphs.
引用
收藏
页码:460 / 468
页数:9
相关论文
共 28 条
[1]  
[Anonymous], RYUKYU MATH J
[2]  
[Anonymous], 2014, Proofs from The Book
[3]  
[Anonymous], 2004, Notices Amer. Math. Soc.
[4]   The thirteen spheres: A new proof [J].
Anstreicher, KM .
DISCRETE & COMPUTATIONAL GEOMETRY, 2004, 31 (04) :613-625
[5]   New upper bounds for kissing numbers from semidefinite programming [J].
Bachoc, Christine ;
Vallentin, Frank .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 21 (03) :909-924
[6]   Arrangements of 14, 15, 16 and 17 points on a sphere [J].
Böröczky, K ;
Szabó, L .
STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2003, 40 (04) :407-421
[7]  
BOROCZKY K, 2003, DISCRETE GEOMETRY, P103
[8]  
Boroczky K., 1983, STUD SCI MATH HUNG, V18, P165
[9]  
Boyd S., 2004, CONVEX OPTIMIZATION
[10]  
Brass P., 2005, Research Problems in Discrete Geometry, P5, DOI DOI 10.1007/0-387-29929-7