On the Held-Karp relaxation for the asymmetric and symmetric traveling salesman problems

被引:25
作者
Carr, R
Vempala, S
机构
[1] Sandia Natl Labs, Albuquerque, NM 87185 USA
[2] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
Objective Function; Combinatorial Optimization; Main Tool; Travel Salesman Problem; Linear Programming Relaxation;
D O I
10.1007/s10107-004-0506-y
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A long-standing conjecture in combinatorial optimization says that the integrality gap of the famous Held-Karp relaxation of the metric STSP (Symmetric Traveling Salesman Problem) is precisely 4/3. In this paper, we show that a slight strengthening of this conjecture implies a tight 4/3 integrality gap for a linear programming relaxation of the metric ATSP (Asymmetric Traveling Salesman Problem). Our main tools are a new characterization of the integrality gap for linear objective functions over polyhedra, and the isolation of ''hard-to-round'' solutions of the relaxations.
引用
收藏
页码:569 / 587
页数:19
相关论文
共 12 条
[1]  
BOYD S, 1999, FINDING LOW COST TSP
[2]  
Carr R, 1998, LECT NOTES COMPUT SC, V1412, P112
[3]  
Christofides N., 1976, tech. rep.
[4]   ON THE WORST-CASE PERFORMANCE OF SOME ALGORITHMS FOR THE ASYMMETRIC TRAVELING SALESMAN PROBLEM [J].
FRIEZE, AM ;
GALBIATI, G ;
MAFFIOLI, F .
NETWORKS, 1982, 12 (01) :23-39
[5]   SURVIVABLE NETWORKS, LINEAR-PROGRAMMING RELAXATIONS AND THE PARSIMONIOUS PROPERTY [J].
GOEMANS, MX ;
BERTSIMAS, DJ .
MATHEMATICAL PROGRAMMING, 1993, 60 (02) :145-166
[6]   WORST-CASE COMPARISON OF VALID INEQUALITIES FOR THE TSP [J].
GOEMANS, MX .
MATHEMATICAL PROGRAMMING, 1995, 69 (02) :335-349
[7]  
Grotschel M, 2012, Geometric algorithms and combinatorial optimization, V2
[8]   TRAVELING-SALESMAN PROBLEM AND MINIMUM SPANNING TREES [J].
HELD, M ;
KARP, RM .
OPERATIONS RESEARCH, 1970, 18 (06) :1138-&
[9]   SOME CONNECTIVITY PROPERTIES OF EULERIAN GRAPHS [J].
LOVASZ, L .
ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1976, 28 (1-2) :129-138
[10]   MINIMUM-WEIGHT 2-CONNECTED SPANNING NETWORKS [J].
MONMA, CL ;
MUNSON, BS ;
PULLEYBLANK, WR .
MATHEMATICAL PROGRAMMING, 1990, 46 (02) :153-171