Modulation analysis of boundary-induced motion of optical solitary waves in a nematic liquid crystal

被引:25
作者
Alberucci, Alessandro [1 ]
Assanto, Gaetano [1 ]
Buccoliero, Daniel [2 ]
Desyatnikov, Anton S. [2 ]
Marchant, Timothy R. [3 ]
Smyth, Noel F. [4 ,5 ]
机构
[1] Univ Rome Roma Tre, CNISM, Dept Elect Engn, NooEL Nonlinear Opt & OptoElect Lab, I-00146 Rome, Italy
[2] Australian Natl Univ, Res Sch Phys & Engn, Nonlinear Phys Ctr, Canberra, ACT 0200, Australia
[3] Univ Wollongong, Sch Math & Appl Stat, Wollongong, NSW 2522, Australia
[4] Univ Edinburgh, Sch Math, Edinburgh EH9 3JZ, Midlothian, Scotland
[5] Univ Edinburgh, Maxwell Inst Math Sci, Edinburgh EH9 3JZ, Midlothian, Scotland
来源
PHYSICAL REVIEW A | 2009年 / 79卷 / 04期
基金
英国工程与自然科学研究理事会;
关键词
nematic liquid crystals; optical solitons; SPATIAL SOLITONS; PROPAGATION; DYNAMICS;
D O I
10.1103/PhysRevA.79.043816
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We consider the motion of a solitary wave, a nematicon, in a finite cell filled with a nematic liquid crystal. A modulation theory is developed to describe the boundary-induced bouncing of a nematicon in a one-dimensional cell and it is found to give predictions in very good agreement with numerical solutions. The boundary-induced motion is then considered numerically for a two-dimensional cell and a simple extension of the modulation theory from one to two space dimensions is then made, with good agreement being found with numerical solutions for the nematicon trajectory. The role of nematicon shape and relative position to the boundaries in its evolution is discussed.
引用
收藏
页数:8
相关论文
共 32 条
[1]  
Abdullaev F., 1993, OPTICAL SOLITONS
[2]  
Ablowitz M.J., 1991, Nonlinear Evolution Equations and Inverse Scattering
[3]   Self-healing generation of spatial solitons in liquid crystals [J].
Alberucci, A ;
Peccianti, M ;
Assanto, G ;
Coschignano, G ;
De Luca, A ;
Umeton, C .
OPTICS LETTERS, 2005, 30 (11) :1381-1383
[4]   Nonlinear bouncing of nonlocal spatial solitons at the boundaries [J].
Alberucci, Alessandro ;
Peccianti, Marco ;
Assanto, Gaetano .
OPTICS LETTERS, 2007, 32 (19) :2795-2797
[5]   Propagation of optical spatial solitons in finite-size media: interplay between nonlocality and boundary conditions [J].
Alberucci, Alessandro ;
Assanto, Gaetano .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2007, 24 (09) :2314-2320
[6]   Boundary force effects exerted on solitons in highly nonlinear media [J].
Alfassi, Barak ;
Rotschild, Carmel ;
Manela, Ofer ;
Segev, Mordechai ;
Christodoulides, Demetrios N. .
OPTICS LETTERS, 2007, 32 (02) :154-156
[7]  
[Anonymous], 2003, Optical Solitons
[8]  
Assanto G, 2003, OPT PHOTONICS NEWS, V14, P44, DOI 10.1364/OPN.14.2.000044
[9]   Two-color, nonlocal vector solitary waves with angular momentum in nematic liquid crystals [J].
Assanto, Gaetano ;
Smyth, Noel F. ;
Worthy, Annette L. .
PHYSICAL REVIEW A, 2008, 78 (01)
[10]  
BUCCOLIERO D, J OPT A IN PRESS, P14303