Discrete impurity effects in silicon quantum dots

被引:0
作者
Milicic, SN [1 ]
Vasileska, D [1 ]
Akis, R [1 ]
Gunther, A [1 ]
Goodnick, SM [1 ]
机构
[1] Arizona State Univ, Dept Elect Engn, Tempe, AZ 85287 USA
来源
2000 INTERNATIONAL CONFERENCE ON MODELING AND SIMULATION OF MICROSYSTEMS, TECHNICAL PROCEEDINGS | 2000年
关键词
silicon quantum dots; 3D modeling; discrete impurity effects;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We have developed efficient self-consistent 3D Schrodinger-Poisson solver to model the energy level spectrum in silicon quantum dots. We find that the energy level spectrum in the dot can be easily tuned by varying the applied voltage on the top and side gates, thus leading to symmetric or asymmetric parabolic confinement in the plane parallel to the semiconductor/oxide interface. We also investigate the influence of different impurity distributions in the semiconductor substrate on the shape of the wavefunctions and the energy spectrum in the dot. We noticed that different number and different distribution of the impurity atoms in the dot influences the energy spectrum by lifting degeneracy of the levels. We also observe significant mode mixing in the wavefunctions when using atomistic description of the impurity atoms in the semi conductor.
引用
收藏
页码:520 / 523
页数:4
相关论文
共 50 条
[21]   Synthesis of functionalized silicon quantum dots for biological detection and imaging [J].
Jain, Atishay ;
Fopase, Rushikesh ;
Sharma, Laipubam Gayatri ;
Panda, Chinmaya ;
Pandey, Lalit M. .
MATERIALS LETTERS, 2025, 394
[22]   Role of the substrate on the growth of silicon quantum dots embedded in silicon nitride thin films [J].
Rodriguez-Gomez, A. ;
Moreno-Rios, M. ;
Garcia-Garcia, R. ;
Perez-Martinez, A. L. ;
Reyes-Gasga, J. .
MATERIALS CHEMISTRY AND PHYSICS, 2018, 208 :61-67
[23]   Fabrication and Characterization of Silicon Quantum Dots in Si-Rich Silicon Carbide Films [J].
Chang, Geng-Rong ;
Ma, Fei ;
Ma, Dayan ;
Xu, Kewei .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2011, 11 (12) :10824-10828
[24]   Luminescent Downshifting Silicon Quantum Dots for Performance Enhancement of Polycrystalline Silicon Solar Cells [J].
Masaadeh, Qais ;
Kaplani, Eleni ;
Chao, Yimin .
ELECTRONICS, 2022, 11 (15)
[25]   Efficient Exciton Transport between Strongly Quantum-Confined Silicon Quantum Dots [J].
Lin, Zhibin ;
Li, Huashan ;
Franceschetti, Alberto ;
Lusk, Mark T. .
ACS NANO, 2012, 6 (05) :4029-4038
[26]   Determination of the size dispersion of amorphous silicon quantum dots from a silicon nitride film containing silicon nanocrystals [J].
Hafsi, Nadjet ;
Bouridah, Hachemi ;
Haoues, Hakim .
OPTIK, 2020, 207
[27]   PECVD in-situ growth of silicon quantum dots in silicon nitride from silane and nitrogen [J].
Mercaldo, Lucia V. ;
Delli Veneri, Paola ;
Esposito, Emilia ;
Massera, Ettore ;
Usatii, Iurie ;
Privato, Carlo .
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2009, 159-60 :77-79
[28]   Control of size and distribution of silicon quantum dots in silicon dielectrics for solar cell application: A review [J].
Dutta, Subhajit ;
Chatterjee, Somenath ;
Mallem, Kumar ;
Cho, Young Hyun ;
Yi, Junsin .
RENEWABLE ENERGY, 2019, 144 :2-14
[29]   Photoresponsivity Enhancement of Monolayer MoS2 by Silicon Quantum Dots [J].
Gu, Minseon ;
Lee, Keun Wook ;
Park, Beomjin ;
Joo, Beom Soo ;
Chang, Young Jun ;
Park, Dong-Wook ;
Han, Moonsup .
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2023, 17 (10)
[30]   Characterization of cellulose membranes modified with luminescent silicon quantum dots nanoparticles [J].
Campos, B. B. ;
Gelde, L. ;
Algarra, M. ;
Esteves da Silva, J. C. G. ;
Vazquez, M. I. ;
Benavente, J. .
CARBOHYDRATE POLYMERS, 2016, 151 :939-946