Reductive Amination/Cyclization of Methyl Levulinate with Aspartic Acid: Towards Renewable Polyesters with a Pendant Lactam Unit

被引:14
作者
Bernhard, Yann [1 ]
Pellegrini, Sylvain [1 ]
Bousquet, Till [1 ]
Favrelle, Audrey [1 ]
Pelinski, Lydie [1 ]
Cazaux, Frederic [2 ]
Gaucher, Valerie [2 ]
Gerbaux, Pascal [3 ]
Zinck, Philippe [1 ]
机构
[1] Univ Artois, Univ Lille, CNRS,UMR 8181, Cent Lille,ENSCL,UCCS Unite Catalyse & Chim Solid, F-59000 Lille, France
[2] Univ Lille, CNRS, INRA, ENSCL,UMET Unite Mat & Transformat,UMR 8207, F-59000 Lille, France
[3] Univ Mons UMONS, Organ Synth & Mass Spectrometry Lab, 23 Pl Parc, B-7000 Mons, Belgium
关键词
aspartic acid; biobased polyesters; levulinic acid; polymers; reductive amination; CATALYTIC CONVERSION; 5-HYDROXYLEVULINIC ACID; PYRROLIDONE DERIVATIVES; BIODEGRADABLE POLYMERS; GAMMA-VALEROLACTONE; BUILDING-BLOCKS; KETO ACIDS; BIOMASS; CHEMICALS; TRANSFORMATION;
D O I
10.1002/cssc.201900745
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Environmental regulation and depletion of fossil resources are boosting the search for new polymeric materials produced from biomass. Here, the synthesis of a new diester bearing a pendant lactam unit from methyl levulinate and aspartic acid is reported. The palladium-catalyzed reductive amination/cyclization sequence was carefully optimized to afford the diacid with high yield (>95 %). In a second step, the compound was esterified to give the corresponding diester. The latter monomer was copolymerized with alpha-omega linear diols, yielding polyesters with molecular weights up to 20.5 kg mol(-1).
引用
收藏
页码:3370 / 3376
页数:7
相关论文
共 80 条
[1]   Syntheses of High-Performance Biopolyamides Derived from Itaconic Acid and Their Environmental Corrosion [J].
Ali, Mohammad Asif ;
Tateyama, Seiji ;
Oka, Yuuki ;
Kaneko, Daisaku ;
Okajima, Maiko K. ;
Kaneko, Tatsuo .
MACROMOLECULES, 2013, 46 (10) :3719-3725
[2]   Raney-Ni catalyzed conversion of levulinic acid to 5-methyl-2-pyrrolidone using ammonium formate as the H and N source [J].
Amarasekara, Ananda S. ;
Lawrence, Yen Maroney .
TETRAHEDRON LETTERS, 2018, 59 (19) :1832-1835
[3]   Renewable polymers: Synthesis and characterization of poly(levulinic acid-pentaerythritol) [J].
Amarasekara, Ananda S. ;
Ha, Uyen ;
Okorie, Nnaemeka C. .
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2018, 56 (09) :955-958
[4]   Synthesis of levulinic acid-glycerol ketal-ester oligomers and structural characterization using NMR spectroscopy [J].
Amarasekara, Ananda S. ;
Hawkins, Steven A. .
EUROPEAN POLYMER JOURNAL, 2011, 47 (12) :2451-2457
[5]  
[Anonymous], 2011, Angew. Chem, DOI DOI 10.1002/ANGE.201100102
[6]  
[Anonymous], 2016, GREEN CHEM, DOI DOI 10.1039/c6gc01081d
[7]   New Frontiers in the Catalytic Synthesis of Levulinic Acid: From Sugars to Raw and Waste Biomass as Starting Feedstock [J].
Antonetti, Claudia ;
Licursi, Domenico ;
Fulignati, Sara ;
Valentini, Giorgio ;
Galletti, Anna Maria Raspolli .
CATALYSTS, 2016, 6 (12)
[8]   Glycerine and levulinic acid: Renewable co-substrates for the fermentative synthesis of short-chain poly(hydroxyalkanoate) biopolymers [J].
Ashby, Richard D. ;
Solaiman, Daniel K. Y. ;
Strahan, Gary D. ;
Zhu, Chengjun ;
Tappel, Ryan C. ;
Nomura, Christopher T. .
BIORESOURCE TECHNOLOGY, 2012, 118 :272-280
[9]  
Babu RP, 2013, PROG BIOMATER, V2, DOI 10.1186/2194-0517-2-8
[10]   Synthesis of levulinic acid based poly(amine-co-ester)s [J].
Bernhard, Yann ;
Pagies, Lucas ;
Pellegrini, Sylvain ;
Bousquet, Till ;
Favrelle, Audrey ;
Pelinski, Lydie ;
Gerbaux, Pascal ;
Zinck, Philippe .
GREEN CHEMISTRY, 2019, 21 (01) :123-128