EEG Epileptic Seizures Separation with Multivariate Empirical Mode Decomposition for Diagnostic Purposes

被引:0
作者
Rutkowski, Tomasz M. [1 ]
Struzik, Zbigniew R. [2 ]
Mandic, Danilo P. [3 ,4 ]
机构
[1] Univ Tsukuba, Life Sci Ctr TARA, Tsukuba, Ibaraki 305, Japan
[2] Univ Tokyo, RIKEN, Bunkyo, Tokyo, Japan
[3] Imperial Coll London, Kensington, England
[4] RIKEN, Brain Sci Inst, Bunkyo, Tokyo, Japan
来源
2013 35TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC) | 2013年
基金
日本学术振兴会;
关键词
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We present a successful application of a soft computing approach based on the multivariate empirical mode decomposition (MEMD) method to EEG epileptic seizures separation. The results of the automatic multivatiate intrinsic mode functions (IMF) clustering allowed us to separate the seizure related spikes and sharp waves. The results of the proposed method have been compared with classical blind separation approach based on ICA, which failed to identify the non-linear and non-stationary signals related to the brain seizures. The proposed method supports epileptic seizure diagnostic methods.
引用
收藏
页码:7128 / 7131
页数:4
相关论文
共 50 条
[41]   Automatic detection of epileptic slow-waves in EEG based on empirical mode decomposition and wavelet transform [J].
Li, Lili ;
Xu, Guanghua ;
Wang, Jing ;
Cheng, Xiaowen .
JOURNAL OF VIBROENGINEERING, 2013, 15 (02) :961-970
[42]   Epileptic EEG Identification Based on Dual Q-Factor Signal Decomposition (DQSD), Fast and Adaptive Multivariate Empirical Mode Decomposition (FA-MVEMD) and Neural Networks [J].
Wei Zeng ;
Chengzhi Yuan .
Circuits, Systems, and Signal Processing, 2023, 42 :3552-3588
[43]   Epileptic Seizure Detection Using Empirical Mode Decomposition [J].
Tafreshi, Azadeh Kamali ;
Nasrabadi, Ali M. ;
Omidvarnia, Amir H. .
ISSPIT: 8TH IEEE INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY, 2008, :238-242
[44]   Epileptic EEG Identification Based on Dual Q-Factor Signal Decomposition (DQSD), Fast and Adaptive Multivariate Empirical Mode Decomposition (FA-MVEMD) and Neural Networks [J].
Zeng, Wei ;
Yuan, Chengzhi .
CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2023, 42 (06) :3552-3588
[45]   A Dynamic Mode Decomposition Based Approach for Epileptic EEG Classification [J].
Cura, Ozlem Karabiber ;
Ozdemir, Mehmet Akif ;
Pehlivan, Sude ;
Akan, Aydin .
28TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2020), 2021, :1070-1074
[46]   Classification of Epileptic EEG Signals Using Dynamic Mode Decomposition [J].
Cura, Ozlem Karabiber ;
Pehlivan, Sude ;
Akan, Aydin .
2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,
[47]   Lung-Heart Sound Separation Using Noise Assisted Multivariate Empirical Mode Decomposition [J].
Lin, ChingShun ;
Tanumihardja, Wisena A. ;
Shih, HongHui .
2013 INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING AND COMMUNICATIONS SYSTEMS (ISPACS), 2013, :726-730
[48]   EEG Signal Processing Based on Multivariate Empirical Mode Decomposition and Common Spatial Pattern Hybrid Algorithm [J].
Wu, Linyan ;
Wang, Tao ;
Wang, Qi ;
Zhu, Qing ;
Chen, Jinhuan .
INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2019, 33 (09)
[49]   A Multiclass EEG Signal Classification Model Using Channel Interaction Maximization and Multivariate Empirical Mode Decomposition [J].
Jha, Pankaj Kumar ;
Tiwari, Anurag ;
Chaturvedi, Amrita .
NEURAL INFORMATION PROCESSING, ICONIP 2022, PT II, 2023, 13624 :86-100
[50]   Schizophrenia detection using Multivariate Empirical Mode Decomposition and entropy measures from multichannel EEG signal [J].
Krishnan, Palani Thanaraj ;
Raj, Alex Noel Joseph ;
Balasubramanian, Parvathavarthini ;
Chen, Yuanzhu .
BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2020, 40 (03) :1124-1139