EEG Epileptic Seizures Separation with Multivariate Empirical Mode Decomposition for Diagnostic Purposes

被引:0
作者
Rutkowski, Tomasz M. [1 ]
Struzik, Zbigniew R. [2 ]
Mandic, Danilo P. [3 ,4 ]
机构
[1] Univ Tsukuba, Life Sci Ctr TARA, Tsukuba, Ibaraki 305, Japan
[2] Univ Tokyo, RIKEN, Bunkyo, Tokyo, Japan
[3] Imperial Coll London, Kensington, England
[4] RIKEN, Brain Sci Inst, Bunkyo, Tokyo, Japan
来源
2013 35TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC) | 2013年
基金
日本学术振兴会;
关键词
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We present a successful application of a soft computing approach based on the multivariate empirical mode decomposition (MEMD) method to EEG epileptic seizures separation. The results of the automatic multivatiate intrinsic mode functions (IMF) clustering allowed us to separate the seizure related spikes and sharp waves. The results of the proposed method have been compared with classical blind separation approach based on ICA, which failed to identify the non-linear and non-stationary signals related to the brain seizures. The proposed method supports epileptic seizure diagnostic methods.
引用
收藏
页码:7128 / 7131
页数:4
相关论文
共 50 条
[21]   Emotion recognition from EEG signals by using multivariate empirical mode decomposition [J].
Mert, Ahmet ;
Akan, Aydin .
PATTERN ANALYSIS AND APPLICATIONS, 2018, 21 (01) :81-89
[22]   The Removal of EMG Artifact from EEG Signals by the Multivariate Empirical Mode Decomposition [J].
Teng, Chaolin ;
Zhang, Yanyan ;
Wang, Gang .
2014 IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, COMMUNICATIONS AND COMPUTING (ICSPCC), 2014, :873-876
[23]   Emotion recognition from EEG signals by using multivariate empirical mode decomposition [J].
Ahmet Mert ;
Aydin Akan .
Pattern Analysis and Applications, 2018, 21 :81-89
[24]   EEG rhythm separation and time-frequency analysis of fast multivariate empirical mode decomposition for motor imagery BCI [J].
Jiao, Yang ;
Zheng, Qian ;
Qiao, Dan ;
Lang, Xun ;
Xie, Lei ;
Pan, Yi .
BIOLOGICAL CYBERNETICS, 2024, 118 (1-2) :21-37
[25]   Fast Multivariate Empirical Mode Decomposition [J].
Lang, Xun ;
Zheng, Qian ;
Zhang, Zhiming ;
Lu, Shan ;
Xie, Lei ;
Horch, Alexander ;
Su, Hongye .
IEEE ACCESS, 2018, 6 :65521-65538
[26]   Multivariate Empirical Mode Decomposition of EEG for Mental State Detection at Localized Brain Lobes [J].
Islam, Monira ;
Lee, Tan .
2022 44TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY, EMBC, 2022, :3694-3697
[27]   Empirical Mode Decomposition In Epileptic Seizure Prediction [J].
Tafreshi, Azadeh Kamali ;
Nasrabadi, Ali M. ;
Omidvarnia, Amir H. .
ISSPIT: 8TH IEEE INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY, 2008, :275-280
[28]   Application of empirical mode decomposition and artificial neural network for the classification of normal and epileptic EEG signals [J].
Djemili, Rafik ;
Bourouba, Hocine ;
Korba, M. C. Amara .
BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2016, 36 (01) :285-291
[29]   Classification of Epileptic Seizures using Ensemble Empirical Mode Decomposition and Least Squares Support Vector Machine [J].
Torse, Dattaprasad A. ;
Khanai, Rajashri .
2021 INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND INFORMATICS (ICCCI), 2021,
[30]   Analysis of EEG via Multivariate Empirical Mode Decomposition for Depth of Anesthesia Based on Sample Entropy [J].
Wei, Qin ;
Liu, Quan ;
Fan, Shou-Zhen ;
Lu, Cheng-Wei ;
Lin, Tzu-Yu ;
Abbod, Maysam F. ;
Shieh, Jiann-Shing .
ENTROPY, 2013, 15 (09) :3458-3470