EEG Epileptic Seizures Separation with Multivariate Empirical Mode Decomposition for Diagnostic Purposes

被引:0
作者
Rutkowski, Tomasz M. [1 ]
Struzik, Zbigniew R. [2 ]
Mandic, Danilo P. [3 ,4 ]
机构
[1] Univ Tsukuba, Life Sci Ctr TARA, Tsukuba, Ibaraki 305, Japan
[2] Univ Tokyo, RIKEN, Bunkyo, Tokyo, Japan
[3] Imperial Coll London, Kensington, England
[4] RIKEN, Brain Sci Inst, Bunkyo, Tokyo, Japan
来源
2013 35TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC) | 2013年
基金
日本学术振兴会;
关键词
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We present a successful application of a soft computing approach based on the multivariate empirical mode decomposition (MEMD) method to EEG epileptic seizures separation. The results of the automatic multivatiate intrinsic mode functions (IMF) clustering allowed us to separate the seizure related spikes and sharp waves. The results of the proposed method have been compared with classical blind separation approach based on ICA, which failed to identify the non-linear and non-stationary signals related to the brain seizures. The proposed method supports epileptic seizure diagnostic methods.
引用
收藏
页码:7128 / 7131
页数:4
相关论文
共 50 条
  • [21] The Removal of EMG Artifact from EEG Signals by the Multivariate Empirical Mode Decomposition
    Teng, Chaolin
    Zhang, Yanyan
    Wang, Gang
    2014 IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, COMMUNICATIONS AND COMPUTING (ICSPCC), 2014, : 873 - 876
  • [22] Emotion recognition from EEG signals by using multivariate empirical mode decomposition
    Ahmet Mert
    Aydin Akan
    Pattern Analysis and Applications, 2018, 21 : 81 - 89
  • [23] EEG rhythm separation and time-frequency analysis of fast multivariate empirical mode decomposition for motor imagery BCI
    Jiao, Yang
    Zheng, Qian
    Qiao, Dan
    Lang, Xun
    Xie, Lei
    Pan, Yi
    BIOLOGICAL CYBERNETICS, 2024, 118 (1-2) : 21 - 37
  • [24] Fast Multivariate Empirical Mode Decomposition
    Lang, Xun
    Zheng, Qian
    Zhang, Zhiming
    Lu, Shan
    Xie, Lei
    Horch, Alexander
    Su, Hongye
    IEEE ACCESS, 2018, 6 : 65521 - 65538
  • [25] Empirical Mode Decomposition In Epileptic Seizure Prediction
    Tafreshi, Azadeh Kamali
    Nasrabadi, Ali M.
    Omidvarnia, Amir H.
    ISSPIT: 8TH IEEE INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY, 2008, : 275 - 280
  • [26] Application of empirical mode decomposition and artificial neural network for the classification of normal and epileptic EEG signals
    Djemili, Rafik
    Bourouba, Hocine
    Korba, M. C. Amara
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2016, 36 (01) : 285 - 291
  • [27] Classification of Epileptic Seizures using Ensemble Empirical Mode Decomposition and Least Squares Support Vector Machine
    Torse, Dattaprasad A.
    Khanai, Rajashri
    2021 INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND INFORMATICS (ICCCI), 2021,
  • [28] Analysis of EEG via Multivariate Empirical Mode Decomposition for Depth of Anesthesia Based on Sample Entropy
    Wei, Qin
    Liu, Quan
    Fan, Shou-Zhen
    Lu, Cheng-Wei
    Lin, Tzu-Yu
    Abbod, Maysam F.
    Shieh, Jiann-Shing
    ENTROPY, 2013, 15 (09) : 3458 - 3470
  • [29] Fused multivariate empirical mode decomposition (MEMD) and inverse solution method for EEG source localization
    Khosropanah, Pegah
    Ramli, Abdul Rahman
    Lim, Kheng Seang
    Marhaban, Mohammad Hamiruce
    Ahmedov, Anvarjon
    BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK, 2018, 63 (04): : 467 - 479
  • [30] APPLICATION OF MULTIVARIATE EMPIRICAL MODE DECOMPOSITION FOR CLEANING EYE BLINKS ARTIFACTS FROM EEG SIGNALS
    Gallego-Jutgla, Esteve
    Sole-Casals, Jordi
    Rutkowski, Tomasz M.
    Cichocki, Andrzej
    NCTA 2011: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NEURAL COMPUTATION THEORY AND APPLICATIONS, 2011, : 455 - 460