Electrocatalytic hydrogen evolution reaction with metallophthalocyanines modified with click electrochemistry

被引:35
作者
Akyuz, Duygu [1 ]
Dincer, Hatice [2 ]
Ozkaya, Ali Riza [3 ]
Koca, Atif [1 ]
机构
[1] Marmara Univ, Fac Engn, Dept Chem Engn, TR-34722 Istanbul, Turkey
[2] Istanbul Tech Univ, Fac Sci & Letters, Dept Chem, TR-34469 Istanbul, Turkey
[3] Marmara Univ, Fac Sci & Letters, Dept Chem, TR-34722 Istanbul, Turkey
关键词
Electrocatalyst; Hydrogen evolution reaction; Phthalocyanine; Click electrochemistry; WATER ELECTROLYSIS; OXYGEN REDUCTION; TETRASULFONATED PHTHALOCYANINES; COBALT PHTHALOCYANINES; PROTON REDUCTION; ELECTRODES; COMPLEXES; SPECTROELECTROCHEMISTRY; 4-AZIDOANILINE; MONONUCLEAR;
D O I
10.1016/j.ijhydene.2015.07.123
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Cobalt and zinc phthalocyanines bearing terminal alkyne groups (TA-CoPc and TA-ZnPc) were electrochemically characterized in order to determine their functionalities for practical usages as effective electrocatalysts. Observation of multi-electron and metal and/or ring based reduction reactions at low potentials indicated the worthy of these complexes as functional materials. Shifts of proton reduction potentials toward more positive values in solutions involving MPc indicated homogeneous electrocatalytic activities of the complexes for hydrogen evolution reaction (HER). For practical usage as heterogeneous electrocatalysts for HER, electrodes were constructed with a new electrode modification technique, "click electrochemistry", with which TA-CoPc and TA-ZnPc complexes were bonded to azido functionalized polyaniline (PANI-N-3) electropolymerized on electrodes. The modified Glassy Carbon Electrode (GCE)/PANI-N-3/TA-CoPc and GCE/PANI-N-3/TA-ZnPc electrodes were characterized using voltammetric techniques and electrochemical impedance spectroscopy (EIS), then tested as heterogeneous electrocatalyst for HER. GCE/PANI-N-3/TA-CoPc electrodes especially decrease the over-potential of the bare electrode about 216 mV and increase the efficiency of the electrode about 32 fold at low pHs. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:12973 / 12984
页数:12
相关论文
共 60 条
[1]  
Abe T, 1998, POLYM ADVAN TECHNOL, V9, P559, DOI 10.1002/(SICI)1099-1581(199809)9:9<559::AID-PAT818>3.0.CO
[2]  
2-1
[3]   Multi-criteria evaluation of hydrogen system options [J].
Afgan, Naim H. ;
Veziroglu, Ayfer ;
Carvalho, Maria G. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2007, 32 (15) :3183-3193
[4]   Click Chemistry beyond Metal-Catalyzed Cycloaddition [J].
Becer, C. Remzi ;
Hoogenboom, Richard ;
Schubert, Ulrich S. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (27) :4900-4908
[5]   Hydrogen evolution by cobalt tetraimine catalysts adsorbed on electrode surfaces [J].
Berben, Louise A. ;
Peters, Jonas C. .
CHEMICAL COMMUNICATIONS, 2010, 46 (03) :398-400
[6]   Uncoupled non-linear equations method for determining kinetic parameters in case of hydrogen evolution reaction following Volmer-Heyrovsky-Tafel mechanism and Volmer-Heyrovsky mechanism [J].
Bhardwaj, Mukesh ;
Balasubramaniam, R. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (09) :2178-2188
[7]   Electrocatalytic reduction of protons to hydrogen by a water-compatible cobalt polypyridyl platform [J].
Bigi, Julian P. ;
Hanna, Tamara E. ;
Harman, W. Hill ;
Chang, Alicia ;
Chang, Christopher J. .
CHEMICAL COMMUNICATIONS, 2010, 46 (06) :958-960
[8]   Electron transfer at a dithiolate-bridged diiron assembly: Electrocatalytic hydrogen evolution [J].
Borg, SJ ;
Behrsing, T ;
Best, SP ;
Razavet, M ;
Liu, XM ;
Pickett, CJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (51) :16988-16999
[9]   LOW OVERVOLTAGE ELECTROCATALYSTS FOR HYDROGEN EVOLVING ELECTRODES [J].
BROWN, DE ;
MAHMOOD, MN ;
TURNER, AK ;
HALL, SM ;
FOGARTY, PO .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 1982, 7 (05) :405-410
[10]   Highly Efficient Electrocatalytic Hydrogen Production by MoSx Grown on Graphene-Protected 3D Ni Foams [J].
Chang, Yung-Huang ;
Lin, Cheng-Te ;
Chen, Tzu-Yin ;
Hsu, Chang-Lung ;
Lee, Yi-Hsien ;
Zhang, Wenjing ;
Wei, Kung-Hwa ;
Li, Lain-Jong .
ADVANCED MATERIALS, 2013, 25 (05) :756-760