A hidden Markov model combined with climate indices for multidecadal streamflow simulation

被引:45
作者
Bracken, C. [1 ,2 ]
Rajagopalan, B. [1 ,3 ]
Zagona, E. [1 ,4 ]
机构
[1] Univ Colorado, Dept Civil Environm & Architectural Engn, Boulder, CO 80309 USA
[2] Bur Reclamat, Tech Serv Ctr, Denver, CO USA
[3] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
[4] Univ Colorado, Ctr Adv Decis Support Water & Environm Syst, Boulder, CO 80309 USA
关键词
time series; hidden Markov; streamflow; climate indicies; logistic regression; Upper Colorado; HYDROLOGIC TIME-SERIES; LONG-TERM PERSISTENCE; COLORADO RIVER-BASIN; GAMMA-DISTRIBUTIONS; HURST PHENOMENON; DAILY RAINFALL; PRECIPITATION; VARIABILITY; ASSOCIATIONS; GENERATION;
D O I
10.1002/2014WR015567
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Hydroclimate time series often exhibit very low year-to-year autocorrelation while showing prolonged wet and dry epochs reminiscent of regime-shifting behavior. Traditional stochastic time series models cannot capture the regime-shifting features thereby misrepresenting the risk of prolonged wet and dry periods, consequently impacting management and planning efforts. Upper Colorado River Basin (UCRB) annual flow series highlights this clearly. To address this, a simulation framework is developed using a hidden Markov (HM) model in combination with large-scale climate indices that drive multidecadal variability. We demonstrate this on the UCRB flows and show that the simulations are able to capture the regime features by reproducing the multidecadal spectral features present in the data where a basic HM model without climate information cannot. Key Points <list id="wrcr21149-list-0001" list-type="bulleted"> <list-item id="wrcr21149-li-0001">Stochastic simulation of flow time series with regime-like behavior <list-item id="wrcr21149-li-0002">The method used a gamma HM and multinomial logistic regression model <list-item id="wrcr21149-li-0003">Model captures observed statistics and nonstationary spectral variability <doi origin="wiley" registered="yes">10.1002/(ISSN)1944-7973</doi
引用
收藏
页码:7836 / 7846
页数:11
相关论文
共 66 条
[11]  
Cooley D., 2012, BAYESIAN SPATIAL MOD
[12]   Spatial Hierarchical Modeling of Precipitation Extremes From a Regional Climate Model [J].
Cooley, Daniel ;
Sain, Stephan R. .
JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2010, 15 (03) :381-402
[13]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[14]   Two-component mixtures of normal, gamma, and Gumbel distributions for hydrological applications [J].
Evin, G. ;
Merleau, J. ;
Perreault, L. .
WATER RESOURCES RESEARCH, 2011, 47
[15]  
FORNEY GD, 1973, P IEEE, V61, P268, DOI DOI 10.1109/PROC.1973.9030
[16]   Retrospective analysis and forecasting of streamflows using a shifting level model [J].
Fortin, V ;
Perreault, L ;
Salas, JD .
JOURNAL OF HYDROLOGY, 2004, 296 (1-4) :135-163
[17]  
Fruhwirth-Schnatter S., 2006, FINITE MIXTURE MARKO, P301, DOI [10.1007/978-0-387-35768-3 10., DOI 10.1007/978-0-387-35768-310]
[18]   Markov-switching model for nonstationary runoff conditioned on El Nino information [J].
Gelati, E. ;
Madsen, H. ;
Rosbjerg, D. .
WATER RESOURCES RESEARCH, 2010, 46
[19]   A technique for incorporating large-scale climate information in basin-scale ensemble streamflow forecasts [J].
Grantz, K ;
Rajagopalan, B ;
Clark, M ;
Zagona, E .
WATER RESOURCES RESEARCH, 2005, 41 (10) :W10410-1
[20]   Analysis of Indian monsoon daily rainfall on subseasonal to multidecadal time-scales using a hidden Markov model [J].
Greene, A. M. ;
Robertson, A. W. ;
Kirshner, S. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2008, 134 (633) :875-887