Hard instances of the constrained discrete logarithm problem

被引:0
作者
Mironov, Ilya
Mityagin, Anton
Nissim, Kobbi
机构
[1] Microsoft Corp, Mountain View, CA 94041 USA
[2] Univ Calif San Diego, Dept Comp Sci & Engn, La Jolla, CA 92093 USA
来源
ALGORITHMIC NUMBER THEORY, PROCEEDINGS | 2006年 / 4076卷
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The discrete logarithm problem (DLP) generalizes to the constrained DLP, where the secret exponent x belongs to a set known to the attacker. The complexity of generic algorithms for solving the constrained DLP depends on the choice of the set. Motivated by cryptographic applications, we study explicit construction of sets for which the constrained DLP is hard. We draw on earlier results due to Erdos et al. and Schnorr, develop geometric tools such as generalized Menelaus' theorem for proving lower bounds on the complexity of the constrained DLP, and construct explicit sets with provable non-trivial lower bounds.
引用
收藏
页码:582 / 598
页数:17
相关论文
共 33 条
  • [1] [Anonymous], GRADUATE TEXTS MATH
  • [2] [Anonymous], 1997, SEMINUMERICAL ALGORI
  • [3] The difference between consecutive primes, II
    Baker, RC
    Harman, G
    Pintz, J
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2001, 83 : 532 - 562
  • [4] Bose R. C., 1962, Comment. Math. Helv., V37, P141
  • [5] CARTER L, 1977, STOC 1977, P106
  • [6] Slope packings and coverings, and generic algorithms for the discrete logarithm problem
    Chateauneuf, A
    Ling, ACH
    Stinson, DR
    [J]. JOURNAL OF COMBINATORIAL DESIGNS, 2003, 11 (01) : 36 - 50
  • [7] Coron JS, 2005, LECT NOTES COMPUT SC, V3659, P47
  • [8] BASES FOR SETS OF INTEGERS
    ERDOS, P
    NEWMAN, DJ
    [J]. JOURNAL OF NUMBER THEORY, 1977, 9 (04) : 420 - 425
  • [9] ON ADDITIVE BASES AND HARMONIOUS GRAPHS
    GRAHAM, RL
    SLOANE, NJA
    [J]. SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1980, 1 (04): : 382 - 404
  • [10] Guy R., 2004, UNSOLVED PROBLEMS NU