AdapGL: An adaptive graph learning algorithm for traffic prediction based on spatiotemporal neural networks

被引:51
|
作者
Zhang, Wei [1 ,2 ]
Zhu, Fenghua [1 ]
Lv, Yisheng [1 ]
Tan, Chang [3 ]
Liu, Wen [4 ]
Zhang, Xin [5 ]
Wang, Fei-Yue [1 ,6 ]
机构
[1] Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] iFLYTEK CO LTD, Hefei 230088, Peoples R China
[4] Wuhan Univ Technol, Sch Nav, Hubei Key Lab Inland Shipping Technol, Wuhan 430063, Peoples R China
[5] Beijing Municipal Inst City Planning & Design, Beijing 100045, Peoples R China
[6] Macau Univ Sci & Technol, Inst Syst Engn, Taipa, Macao, Peoples R China
基金
中国国家自然科学基金;
关键词
Adaptive graph learning; Traffic prediction; Graph convolutional network; Expectation maximization; Deep learning; SPATIAL-TEMPORAL NETWORK; TRANSPORTATION; MODEL;
D O I
10.1016/j.trc.2022.103659
中图分类号
U [交通运输];
学科分类号
08 ; 0823 ;
摘要
With well-defined graphs, graph convolution based spatiotemporal neural networks for traffic prediction have achieved great performance in numerous tasks. Compared to other methods, the networks can exploit the latent spatial dependencies between nodes according to the adjacency relationship. However, as the topological structure of the real road network tends to be intricate, it is difficult to accurately quantify the correlations between nodes in advance. In this paper, we propose a graph convolutional network based adaptive graph learning algorithm (AdapGL) to acquire the complex dependencies. First, by developing a novel graph learning module, more possible correlations between nodes can be adaptively captured during training. Second, inspired by the expectation maximization (EM) algorithm, the parameters of the prediction network module and the graph learning module are optimized by alternate training. An elaborate loss function is leveraged for graph learning to ensure the sparsity of the generated affinity matrix. In this way, the expectation maximization of one part can be realized under the condition that the other part is the best estimate. Finally, the graph structure is updated by a weighted sum approach. The proposed algorithm can be applied to most graph convolution based networks for traffic forecast. Experimental results demonstrated that our method can not only further improve the accuracy of traffic prediction, but also effectively exploit the hidden correlations of the nodes. The source code is available at https: //github.com/goaheand/AdapGL-pytorch.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Learning graph in graph convolutional neural networks for robust seizure prediction
    Lian, Qi
    Qi, Yu
    Pan, Gang
    Wang, Yueming
    JOURNAL OF NEURAL ENGINEERING, 2020, 17 (03)
  • [32] Spatio-Temporal Graph Neural Network for Traffic Prediction Based on Adaptive Neighborhood Selection
    Sun, HuanZhong
    Tang, XiangHong
    Lu, JianGuang
    Liu, FangJie
    TRANSPORTATION RESEARCH RECORD, 2024, 2678 (06) : 641 - 655
  • [33] Dynamic Correlation Adjacency-Matrix-Based Graph Neural Networks for Traffic Flow Prediction
    Gu, Junhua
    Jia, Zhihao
    Cai, Taotao
    Song, Xiangyu
    Mahmood, Adnan
    SENSORS, 2023, 23 (06)
  • [34] STOG: A Traffic Prediction Scheme Based on Spatio-Temporal Optimized Graph Neural Networks
    Hu, Shuting
    Yu, Ze
    Zhou, Danyang
    Zhou, Yi
    Cheng, Nan
    Lu, Ning
    2021 IEEE 94TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2021-FALL), 2021,
  • [35] Adaptive Graph Convolutional Recurrent Network with Transformer and Whale Optimization Algorithm for Traffic Flow Prediction
    Zhang, Chen
    Wu, Yue
    Shen, Ya
    Wang, Shengzhao
    Zhu, Xuhui
    Shen, Wei
    MATHEMATICS, 2024, 12 (10)
  • [36] Spatiotemporal Attention-Based Graph Convolution Network for Segment-Level Traffic Prediction
    Li, Duo
    Lasenby, Joan
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (07) : 8337 - 8345
  • [37] Learning traffic as a graph: A gated graph wavelet recurrent neural network for network-scale traffic prediction
    Cui, Zhiyong
    Ke, Ruimin
    Pu, Ziyuan
    Ma, Xiaolei
    Wang, Yinhai
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2020, 115
  • [38] Short-Term Traffic Flow Prediction Based on Graph Convolutional Networks and Federated Learning
    Xia, Mengran
    Jin, Dawei
    Chen, Jingyu
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (01) : 1191 - 1203
  • [39] ST-DAGCN: A spatiotemporal dual adaptive graph convolutional network model for traffic prediction
    Liu, Yutian
    Feng, Tao
    Rasouli, Soora
    Wong, Melvin
    NEUROCOMPUTING, 2024, 601
  • [40] Ransomware Detection Model Based on Adaptive Graph Neural Network Learning
    Li, Jun
    Yang, Gengyu
    Shao, Yanhua
    APPLIED SCIENCES-BASEL, 2024, 14 (11):