AdapGL: An adaptive graph learning algorithm for traffic prediction based on spatiotemporal neural networks

被引:50
|
作者
Zhang, Wei [1 ,2 ]
Zhu, Fenghua [1 ]
Lv, Yisheng [1 ]
Tan, Chang [3 ]
Liu, Wen [4 ]
Zhang, Xin [5 ]
Wang, Fei-Yue [1 ,6 ]
机构
[1] Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] iFLYTEK CO LTD, Hefei 230088, Peoples R China
[4] Wuhan Univ Technol, Sch Nav, Hubei Key Lab Inland Shipping Technol, Wuhan 430063, Peoples R China
[5] Beijing Municipal Inst City Planning & Design, Beijing 100045, Peoples R China
[6] Macau Univ Sci & Technol, Inst Syst Engn, Taipa, Macao, Peoples R China
基金
中国国家自然科学基金;
关键词
Adaptive graph learning; Traffic prediction; Graph convolutional network; Expectation maximization; Deep learning; SPATIAL-TEMPORAL NETWORK; TRANSPORTATION; MODEL;
D O I
10.1016/j.trc.2022.103659
中图分类号
U [交通运输];
学科分类号
08 ; 0823 ;
摘要
With well-defined graphs, graph convolution based spatiotemporal neural networks for traffic prediction have achieved great performance in numerous tasks. Compared to other methods, the networks can exploit the latent spatial dependencies between nodes according to the adjacency relationship. However, as the topological structure of the real road network tends to be intricate, it is difficult to accurately quantify the correlations between nodes in advance. In this paper, we propose a graph convolutional network based adaptive graph learning algorithm (AdapGL) to acquire the complex dependencies. First, by developing a novel graph learning module, more possible correlations between nodes can be adaptively captured during training. Second, inspired by the expectation maximization (EM) algorithm, the parameters of the prediction network module and the graph learning module are optimized by alternate training. An elaborate loss function is leveraged for graph learning to ensure the sparsity of the generated affinity matrix. In this way, the expectation maximization of one part can be realized under the condition that the other part is the best estimate. Finally, the graph structure is updated by a weighted sum approach. The proposed algorithm can be applied to most graph convolution based networks for traffic forecast. Experimental results demonstrated that our method can not only further improve the accuracy of traffic prediction, but also effectively exploit the hidden correlations of the nodes. The source code is available at https: //github.com/goaheand/AdapGL-pytorch.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Traffic prediction based on auto spatiotemporal Multi-graph Adversarial Neural Network
    Wang, Jun
    Wang, Wenjun
    Liu, Xueli
    Yu, Wei
    Li, Xiaoming
    Sun, Peiliang
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2022, 590
  • [22] Adaptive Network Traffic Prediction Algorithm based on BP Neural Network
    Zhang, Ming
    Lu, Yanhong
    INTERNATIONAL JOURNAL OF FUTURE GENERATION COMMUNICATION AND NETWORKING, 2015, 8 (05): : 195 - 206
  • [23] Spatiotemporal Graph Neural Network for Traffic Prediction Exploiting Cascading Behavior
    Zhang, Haoxiang
    Gan, Xiaoying
    Fu, Luoyi
    Xiang, Liyao
    Jin, Haiming
    2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2021,
  • [24] Metro Traffic Flow Prediction via Knowledge Graph and Spatiotemporal Graph Neural Network
    Wang, Shun
    Lv, Yimei
    Peng, Yuan
    Piao, Xinglin
    Zhang, Yong
    JOURNAL OF ADVANCED TRANSPORTATION, 2022, 2022
  • [25] Metro Traffic Flow Prediction via Knowledge Graph and Spatiotemporal Graph Neural Network
    Beijing Artificial Intelligence Institute, Faculty of Information Technology, Beijing University of Technology, Beijing
    100124, China
    不详
    266011, China
    不详
    100083, China
    J Adv Transp, 2022,
  • [26] Adaptive dependency learning graph neural networks
    Sriramulu, Abishek
    Fourrier, Nicolas
    Bergmeir, Christoph
    INFORMATION SCIENCES, 2023, 625 : 700 - 714
  • [27] Adaptive Transfer Learning on Graph Neural Networks
    Han, Xueting
    Huang, Zhenhuan
    An, Bang
    Bai, Jing
    KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 565 - 574
  • [28] Learning Adaptive Neighborhoods for Graph Neural Networks
    Saha, Avishkar
    Mendez, Oscar
    Russell, Chris
    Bowden, Richard
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 22484 - 22493
  • [29] SPATIOTEMPORAL GRAPH CONVOLUTIONAL NEURAL NETWORKS FOR METRO FLOW PREDICTION
    Jin, Shiyuan
    Jing, Changfeng
    Wang, Yi
    Lv, Xinxin
    XXIV ISPRS CONGRESS IMAGING TODAY, FORESEEING TOMORROW, COMMISSION IV, 2022, 43-B4 : 403 - 409
  • [30] A Traffic Flow Prediction Framework Based on Clustering and Heterogeneous Graph Neural Networks
    Luo, Lei
    Han, Shiyuan
    Li, Zhongtao
    Yang, Jun
    Yang, Xixin
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT II, 2023, 14087 : 58 - 69