Differential physiological and molecular response of barley genotypes to water deficit

被引:41
|
作者
de Mezer, Mateusz [1 ]
Turska-Taraska, Anna [1 ]
Kaczmarek, Zygmunt [1 ]
Glowacka, Katarzyna [1 ]
Swarcewicz, Barbara [2 ]
Rorat, Tadeusz [1 ]
机构
[1] Polish Acad Sci, Inst Plant Genet, PL-60479 Poznan, Poland
[2] Polish Acad Sci, Inst Bioorgan Chem, PL-64701 Poznan, Poland
关键词
Barley (Hordeum vulgare L.); Relative water content; Water use efficiency; Drought tolerance; LEA; bZIP transcription factor; Hsdr4 (Hordeum spontaneum dehydration responsive 4); SOLUBLE CARBOHYDRATE ACCUMULATION; GENE-EXPRESSION; DROUGHT STRESS; USE EFFICIENCY; OSMOTIC-STRESS; TRANSCRIPTION FACTORS; LOW-TEMPERATURE; SALT TOLERANCE; GAS-EXCHANGE; ARABIDOPSIS;
D O I
10.1016/j.plaphy.2014.03.025
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Changes in physiological parameters (relative water content (RWC), biomass, water use efficiency (WUE), net photosynthetic yield (P-N) and quantum yield of PSII (F-v/F-m)), in proline and sugar content, and expression profile of genes reported to be associated with the barley response to water deficit, including LEA genes, NHX1, Hsdr4, BLT101 and genes encoding transcription factors (HvDREB1, HvABF1, HvABI5 and HvZIP1), were analyzed in seedlings of nine barley genotypes subjected to a progressive increase in water deficit. Seedlings of all genotypes wilted when the soil water content (SWC) declined from 65% (control conditions) to 10% (severe drought conditions), but recovered turgor within a few hours of re-watering. However, when severe drought conditions were prolonged for a week, large differences in survival characteristics were observed between genotypes after re-watering. Multivariate analysis of the changes in physiological and molecular characteristics allowed several different homogenous groups within the genotypes to be distinguished, depending on stress intensity. Furthermore, integration between the stress-response traits was found and was shown to vary depending on the genotype and the stress level. Based on analysis of physiological traits and survival characteristics, two barley genotypes with high adaptability to the stress conditions (cv. Saida and breeding line Cam/B1), and two with low adaptability (cv. Express and breeding line Harmal), were identified. In addition, only changes in expression of the genes HvZIP1, encoding a b-ZIP-type transcription factor, and Hsdr4, encoding a protein of unknown function, were shown to be linked with adaptability of barley to water deficit. In summary, physiological and molecular data revealed large, stress-level-dependent differences between the barley cultivars and breeding lines tested in their response to water deficit. (C) 2014 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:234 / 248
页数:15
相关论文
共 50 条
  • [41] THE RESPONSE OF SPRING BARLEY GENOTYPES TO DIFFERENT WATER AND MINERAL NUTRIENT REGIMES
    ZEMANEK, M
    ROSTLINNA VYROBA, 1983, 29 (06): : 633 - 642
  • [42] Physiological and molecular responses of Aeluropus lagopoides (Poaceae) to water deficit
    Mohsenzadeh, S.
    Malboobi, M. A.
    Razavi, K.
    Farrahi-Aschtiani, S.
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2006, 56 (03) : 314 - 322
  • [43] DIFFERENTIAL RESPONSE OF BARLEY GENOTYPES TO NITROGEN APPLICATION IN A MEDITERRANEAN-TYPE CLIMATE
    GARDENER, CJ
    RATHJEN, AJ
    AUSTRALIAN JOURNAL OF AGRICULTURAL RESEARCH, 1975, 26 (02): : 219 - 230
  • [44] The effect of water deficit on the activity of hydrogen peroxide-scavenging enzymes in two barley genotypes
    Bandurska, H
    ACTA SOCIETATIS BOTANICORUM POLONIAE, 2002, 71 (04) : 307 - 310
  • [45] Physiological and molecular signatures reveal differential response of rice genotypes to drought and drought combination with heat and salinity stress
    Chhaya Yadav
    Rajeev Nayan Bahuguna
    Om Parkash Dhankher
    Sneh L. Singla-Pareek
    Ashwani Pareek
    Physiology and Molecular Biology of Plants, 2022, 28 : 899 - 910
  • [46] Physiological and molecular signatures reveal differential response of rice genotypes to drought and drought combination with heat and salinity stress
    Yadav, Chhaya
    Bahuguna, Rajeev Nayan
    Dhankher, Om Parkash
    Singla-Pareek, Sneh L.
    Pareek, Ashwani
    PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS, 2022, 28 (04) : 899 - 910
  • [47] Morphological, physiological, and biochemical responses of yerba mate (Ilex paraguariensis) genotypes to water deficit
    Gabira, Monica Moreno
    Bergeron, Yves
    Duarte, Manoela Mendes
    de Aguiar, Natalia Saudade
    Kratz, Dagma
    da Silva, Magali Ribeiro
    Wendling, Ivar
    Girona, Miguel Montoro
    NEW FORESTS, 2024, 55 (06) : 1771 - 1785
  • [48] Morpho-physiological and biochemical responses of muskmelon genotypes to different degree of water deficit
    Ansari, W. A.
    Atri, N.
    Singh, B.
    Kumar, P.
    Pandey, S.
    PHOTOSYNTHETICA, 2018, 56 (04) : 1019 - 1030
  • [49] RESPONSE OF OATS TO WATER DEFICIT .1. PHYSIOLOGICAL CHARACTERISTICS
    SANDHU, BS
    HORTON, ML
    AGRONOMY JOURNAL, 1977, 69 (03) : 357 - 360
  • [50] Physiological response of potato plants to soil salinity and water deficit
    Heuer, B
    Nadler, A
    PLANT SCIENCE, 1998, 137 (01) : 43 - 51