Target detection in non-stationary clutter background and Riemannian geometry

被引:4
作者
Fan, Haiyan [1 ]
Jiang, Yongmei [1 ]
Kuang, Gangyao [1 ]
机构
[1] Natl Univ Def Technol, Sch Elect Sci & Engn, Changsha 410073, Hunan, Peoples R China
关键词
object detection; radar clutter; radar detection; radar signal processing; nonstationary background; Riemannian geometry; AR model; Riemannian geometry method; nonstationary clutter; signal parameterisation; parameter vector space; complex Riemannian manifold; AR coefficients; Riemannian distance; Riemannian median; sea clutter; radar target detection; targets detection method;
D O I
10.1049/iet-rsn.2013.0074
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This study combines a smooth prior long autoregressive (SLAR) model and Riemannian geometry method to realise target detection in the presence of non-stationary clutter. First, SLAR is used for parameterisation of the signal. Then, the signal is mapped to a parameter vector space which can be described as a complex Riemannian manifold. Each point of this manifold is identified by a vector of AR coefficients. The principle of detection is that if a location has an enough Riemannian distance from the Riemannian median estimated by its neighbouring locations, targets are supposed to appear at this location. Numeric experiments and real radar target detection within sea clutter are given to demonstrate the effectiveness of the proposed targets detection method.
引用
收藏
页码:376 / 381
页数:6
相关论文
共 9 条
[1]  
Angelsen B. A. J., 1980, IEEE T BIOMED ENG, V27, P61, DOI [10.1109/TBME.1980.326708, DOI 10.1109/TBME.1980.326708]
[2]  
Barbaresco F., 2012, INFORM GEOMETRY COVA, P199
[3]   The geometric median on Riemannian manifolds with application to robust atlas estimation [J].
Fletcher, P. Thomas ;
Venkatasubramanian, Suresh ;
Joshi, Sarang .
NEUROIMAGE, 2009, 45 (01) :S143-S152
[4]  
Gianfelici F., 2009, IEEE Trans. Inf. Theory, V55, P2905, DOI [10.1109/TTT20092016067, DOI 10.1109/TTT20092016067]
[5]   Impact of Sea Clutter Nonstationarity on Disturbance Covariance Matrix Estimation and CFAR Detector Performance [J].
Greco, Maria ;
Stinco, Pietro ;
Gini, Fulvio ;
Rangaswamy, Muralidhar .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2010, 46 (03) :1502-+
[6]  
Herment A, 1997, J PHYS III, V7, P2079, DOI 10.1051/jp3:1997242
[7]  
Honkela A, 2010, J MACH LEARN RES, V11, P3235
[8]   A SMOOTHNESS PRIORS LONG AR MODEL METHOD FOR SPECTRAL ESTIMATION [J].
KITAGAWA, G ;
GERSCH, W .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1985, 30 (01) :57-65
[9]   Intrinsic statistics on riemannian manifolds: Basic tools for geometric measurements [J].
Pennec, Xavier .
JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2006, 25 (01) :127-154