A polynomial solvable minimum risk spanning tree problem with interval data

被引:8
|
作者
Chen, Xujin [1 ]
Hu, Jie [1 ]
Hu, Xiaodong [1 ]
机构
[1] Chinese Acad Sci, Inst Appl Math, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Combinatorial optimization; Spanning tree; Interval data; OPTIMIZATION PROBLEMS; NETWORK DESIGN; PATH PROBLEM; ALGORITHM;
D O I
10.1016/j.ejor.2008.06.039
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
We propose and study a new model for the spanning tree problem with interval data, the Minimum Risk Spanning Tree (MRST) problem. that finds diverse applications in network design. Given an underlying network G = (V, E), each link e is an element of E can be established by paying a Cost c(e) is an element of [(c) under bar (e), (c) over bar (e)], and accordingly takes a risk (c) over bar (e)-c(e)/(c) over bar (e)-(c) under bar (e). of link failure, The MRST problem is to establish a spanning tree T in G of total cost not more than a given constant so that the risk sum over the links in T is minimized. We prove that the MRST problem can be solved in polynomial time, and thus has algorithmic aspect more satisfactory than the NP-hard robust spanning tree problem with interval data. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:43 / 46
页数:4
相关论文
共 50 条
  • [21] The minimum spanning tree problem with fuzzy costs
    Adam Janiak
    Adam Kasperski
    Fuzzy Optimization and Decision Making, 2008, 7 : 105 - 118
  • [22] The minimum spanning tree problem with conflict constraints and its variations
    Zhang, Ruonan
    Kabadi, Santosh N.
    Punnen, Abraham P.
    DISCRETE OPTIMIZATION, 2011, 8 (02) : 191 - 205
  • [23] Solving the minimum labelling spanning tree problem by intelligent optimization
    Consoli, S.
    Mladenovic, N.
    Perez, J. A. Moreno
    APPLIED SOFT COMPUTING, 2015, 28 : 440 - 452
  • [24] Solving the Minimum Spanning Tree Problem Under Interval-Valued Fermatean Neutrosophic Domain
    Dhouib S.
    Vidhya K.
    Broumi S.
    Talea M.
    Neutrosophic Sets and Systems, 2024, 67 : 11 - 20
  • [25] An efficient polynomial time approximation scheme for the constrained minimum spanning tree problem using matroid intersection
    Hassin, R
    Levin, A
    SIAM JOURNAL ON COMPUTING, 2004, 33 (02) : 261 - 268
  • [26] Ant Colony Optimization and the minimum spanning tree problem
    Neumann, Frank
    Witt, Carsten
    THEORETICAL COMPUTER SCIENCE, 2010, 411 (25) : 2406 - 2413
  • [27] An adaptive heuristic to the bounded-diameter minimum spanning tree problem
    Torkestani, Javad Akbari
    SOFT COMPUTING, 2012, 16 (11) : 1977 - 1988
  • [28] Recoverable robust spanning tree problem under interval uncertainty representations
    Hradovich, Mikita
    Kasperski, Adam
    Zielinski, Pawel
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 34 (02) : 554 - 573
  • [29] Recoverable robust spanning tree problem under interval uncertainty representations
    Mikita Hradovich
    Adam Kasperski
    Paweł Zieliński
    Journal of Combinatorial Optimization, 2017, 34 : 554 - 573
  • [30] The subdivision-constrained minimum spanning tree problem
    Li, Jianping
    Li, Weidong
    Zhang, Tongquan
    Zhang, Zhongxu
    THEORETICAL COMPUTER SCIENCE, 2009, 410 (8-10) : 877 - 885