HD CAGnome: A Search Tool for Huntingtin CAG Repeat Length-Correlated Genes

被引:5
作者
Galkina, Ekaterina I. [1 ]
Shin, Aram [1 ]
Coser, Kathryn R. [2 ]
Shioda, Toshi [2 ]
Kohane, Isaac S. [3 ,4 ,5 ]
Seong, Ihn Sik [1 ]
Wheeler, Vanessa C. [1 ]
Gusella, James F. [1 ]
MacDonald, Marcy E. [1 ]
Lee, Jong-Min [1 ]
机构
[1] Massachusetts Gen Hosp, Ctr Human Genet Res, Boston, MA 02114 USA
[2] Massachusetts Gen Hosp, Ctr Canc, Charlestown, MA USA
[3] Childrens Hosp, Childrens Hosp Informat Program, Boston, MA 02115 USA
[4] Harvard Univ, Sch Med, Ctr Biomed Informat, Boston, MA USA
[5] I2b2 Natl Ctr Biomed Comp, Boston, MA USA
基金
美国国家卫生研究院;
关键词
EXPRESSION CHANGES; DISEASE; POLYGLUTAMINE; BIOMARKERS; EXPANSION; ONSET; BRAIN; AGE;
D O I
10.1371/journal.pone.0095556
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: The length of the huntingtin (HTT) CAG repeat is strongly correlated with both age at onset of Huntington's disease (HD) symptoms and age at death of HD patients. Dichotomous analysis comparing HD to controls is widely used to study the effects of HTT CAG repeat expansion. However, a potentially more powerful approach is a continuous analysis strategy that takes advantage of all of the different CAG lengths, to capture effects that are expected to be critical to HD pathogenesis. Methodology/Principal Findings: We used continuous and dichotomous approaches to analyze microarray gene expression data from 107 human control and HD lymphoblastoid cell lines. Of all probes found to be significant in a continuous analysis by CAG length, only 21.4% were so identified by a dichotomous comparison of HD versus controls. Moreover, of probes significant by dichotomous analysis, only 33.2% were also significant in the continuous analysis. Simulations revealed that the dichotomous approach would require substantially more than 107 samples to either detect 80% of the CAG-length correlated changes revealed by continuous analysis or to reduce the rate of significant differences that are not CAG length-correlated to 20% (n = 133 or n = 206, respectively). Given the superior power of the continuous approach, we calculated the correlation structure between HTT CAG repeat lengths and gene expression levels and created a freely available searchable website, "HD CAGnome,'' that allows users to examine continuous relationships between HTT CAG and expression levels of similar to 20,000 human genes. Conclusions/Significance: Our results reveal limitations of dichotomous approaches compared to the power of continuous analysis to study a disease where human genotype-phenotype relationships strongly support a role for a continuum of CAG length-dependent changes. The compendium of HTT CAG length-gene expression level relationships found at the HD CAGnome now provides convenient routes for discovery of candidates influenced by the HD mutation.
引用
收藏
页数:7
相关论文
共 18 条
[1]   THE RELATIONSHIP BETWEEN TRINUCLEOTIDE (CAG) REPEAT LENGTH AND CLINICAL-FEATURES OF HUNTINGTONS-DISEASE [J].
ANDREW, SE ;
GOLDBERG, YP ;
KREMER, B ;
TELENIUS, H ;
THEILMANN, J ;
ADAM, S ;
STARR, E ;
SQUITIERI, F ;
LIN, BY ;
KALCHMAN, MA ;
GRAHAM, RK ;
HAYDEN, MR .
NATURE GENETICS, 1993, 4 (04) :398-403
[2]   Genome-wide expression profiling of human blood reveals biomarkers for Huntington's disease [J].
Borovecki, F ;
Lovrecic, L ;
Zhou, J ;
Jeong, H ;
Then, F ;
Rosas, HD ;
Hersch, SM ;
Hogarth, P ;
Bouzou, B ;
Jensen, RV ;
Krainc, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (31) :11023-11028
[3]   TRINUCLEOTIDE REPEAT LENGTH INSTABILITY AND AGE-OF-ONSET IN HUNTINGTONS-DISEASE [J].
DUYAO, M ;
AMBROSE, C ;
MYERS, R ;
NOVELLETTO, A ;
PERSICHETTI, F ;
FRONTALI, M ;
FOLSTEIN, S ;
ROSS, C ;
FRANZ, M ;
ABBOTT, M ;
GRAY, J ;
CONNEALLY, P ;
YOUNG, A ;
PENNEY, J ;
HOLLINGSWORTH, Z ;
SHOULSON, I ;
LAZZARINI, A ;
FALEK, A ;
KOROSHETZ, W ;
SAX, D ;
BIRD, E ;
VONSATTEL, J ;
BONILLA, E ;
ALVIR, J ;
CONDE, JB ;
CHA, JH ;
DURE, L ;
GOMEZ, F ;
RAMOS, M ;
SANCHEZRAMOS, J ;
SNODGRASS, S ;
DEYOUNG, M ;
WEXLER, N ;
MOSCOWITZ, C ;
PENCHASZADEH, G ;
MACFARLANE, H ;
ANDERSON, M ;
JENKINS, B ;
SRINIDHI, J ;
BARNES, G ;
GUSELLA, J ;
MACDONALD, M .
NATURE GENETICS, 1993, 4 (04) :387-392
[5]   Regional and cellular gene expression changes in human Huntington's disease brain [J].
Hodges, A ;
Strand, AD ;
Aragaki, AK ;
Kuhn, A ;
Sengstag, T ;
Hughes, G ;
Elliston, LA ;
Hartog, C ;
Goldstein, DR ;
Thu, D ;
Hollingsworth, ZR ;
Collin, F ;
Synek, B ;
Holmans, PA ;
Young, AB ;
Wexler, NS ;
Delorenzi, M ;
Kooperberg, C ;
Augood, SJ ;
Faull, RLM ;
Olson, JM ;
Jones, L ;
Luthi-Carter, R .
HUMAN MOLECULAR GENETICS, 2006, 15 (06) :965-977
[6]   Adjusting batch effects in microarray expression data using empirical Bayes methods [J].
Johnson, W. Evan ;
Li, Cheng ;
Rabinovic, Ariel .
BIOSTATISTICS, 2007, 8 (01) :118-127
[7]   Mutant huntingtin's effects on striatal gene expression in mice recapitulate changes observed in human Huntington's disease brain and do not differ with mutant huntingtin length or wild-type huntingtin dosage [J].
Kuhn, Alexandre ;
Goldstein, Darlene R. ;
Hodges, Angela ;
Strand, Andrew D. ;
Sengstag, Thierry ;
Kooperberg, Charles ;
Becanovic, Kristina ;
Pouladi, Mahmoud A. ;
Sathasivam, Kirupa ;
Cha, Jang-Ho J. ;
Hannan, Anthony J. ;
Hayden, Michael R. ;
Leavitt, Blair R. ;
Dunnett, Stephen B. ;
Ferrante, Robert J. ;
Albin, Roger ;
Shelbourne, Peggy ;
Delorenzi, Mauro ;
Augood, Sarah J. ;
Faull, Richard L. M. ;
Olson, James M. ;
Bates, Gillian P. ;
Jones, Lesley ;
Luthi-Carter, Ruth .
HUMAN MOLECULAR GENETICS, 2007, 16 (15) :1845-1861
[8]   CAG repeat expansion in Huntington disease determines age at onset in a fully dominant fashion [J].
Lee, J. -M. ;
Ramos, E. M. ;
Lee, J. -H. ;
Gillis, T. ;
Mysore, J. S. ;
Hayden, M. R. ;
Warby, S. C. ;
Morrison, P. ;
Nance, M. ;
Ross, C. A. ;
Margolis, R. L. ;
Squitieri, F. ;
Orobello, S. ;
Di Donato, S. ;
Gomez-Tortosa, E. ;
Ayuso, C. ;
Suchowersky, O. ;
Trent, R. J. A. ;
McCusker, E. ;
Novelletto, A. ;
Frontali, M. ;
Jones, R. ;
Ashizawa, T. ;
Frank, S. ;
Saint-Hilaire, M. H. ;
Hersch, S. M. ;
Rosas, H. D. ;
Lucente, D. ;
Harrison, M. B. ;
Zanko, A. ;
Abramson, R. K. ;
Marder, K. ;
Sequeiros, J. ;
Paulsen, J. S. ;
Landwehrmeyer, G. B. ;
Myers, R. H. ;
MacDonald, M. E. ;
Gusella, J. F. ;
Durr, Alexandra ;
Rosenblatt, Adam ;
Frati, Luigi ;
Perlman, Susan ;
Conneally, Patrick M. ;
Klimek, Mary Lou ;
Diggin, Melissa ;
Hadzi, Tiffany ;
Duckett, Ayana ;
Ahmed, Anwar ;
Allen, Paul ;
Ames, David .
NEUROLOGY, 2012, 78 (10) :690-695
[9]   Dominant effects of the Huntingtons disease HTT CAG repeat length are captured in gene-expression data sets by a continuous analysis mathematical modeling strategy [J].
Lee, Jong-Min ;
Galkina, Ekaterina I. ;
Levantovsky, Rachel M. ;
Fossale, Elisa ;
Anderson, Mary Anne ;
Gillis, Tammy ;
Mysore, Jayalakshmi Srinidhi ;
Coser, Kathryn R. ;
Shioda, Toshi ;
Zhang, Bin ;
Furia, Matthew D. ;
Derry, Jonathan ;
Kohane, Isaac S. ;
Seong, Ihn Sik ;
Wheeler, Vanessa C. ;
Gusella, James F. ;
MacDonald, Marcy E. .
HUMAN MOLECULAR GENETICS, 2013, 22 (16) :3227-3238
[10]   Polyglutamine and transcription: gene expression changes shared by DRPLA and Huntington's disease mouse models reveal context-independent effects [J].
Luthi-Carter, R ;
Strand, AD ;
Hanson, SA ;
Kooperberg, C ;
Schilling, G ;
La Spada, AR ;
Merry, DE ;
Young, AB ;
Ross, CA ;
Borchelt, DR ;
Olson, JM .
HUMAN MOLECULAR GENETICS, 2002, 11 (17) :1927-1937