DRINFELD-TYPE PRESENTATIONS OF LOOP ALGEBRAS

被引:3
作者
Chen, Fulin [1 ]
Jing, Naihuan [2 ]
Kong, Fei [3 ]
Tan, Shaobin [1 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[2] North Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[3] Hunan Normal Univ, Sch Math & Stat, Key Lab Comp & Stochast Math, Minist Educ, Changsha 410081, Peoples R China
关键词
Drinfeld-type presentation; loop algebra; universal central extension; extended affine Lie algebra; twisted quantum affinization; Gamma-vertex algebra; AFFINE QUANTUM ALGEBRAS; LIE-ALGEBRAS; VERTEX ALGEBRAS; REALIZATION; REPRESENTATIONS; CONSTRUCTION;
D O I
10.1090/tran/8120
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let g be the derived subalgebra of a Kac-Moody Lie algebra of finite-type or affine-type, let mu be a diagram automorphism of g, and let L(g, mu) be the loop algebra of g associated to mu. In this paper, by using the vertex algebra technique, we provide a general construction of current-type presentations for the universal central extension (g) over cap[mu] of L( g, mu). The construction contains the classical limit of Drinfeld's new realization for (twisted and untwisted) quantum affine algebras [Soviet Math. Dokl. 36 (1988), pp. 212-216] and the Moody-Rao-Yokonuma presentation for toroidal Lie algebras [Geom. Dedicata 35 (1990), pp. 283-307] as special examples. As an application, when g is of simply-laced-type, we prove that the classical limit of the mu-twisted quantum affinization of the quantum Kac-Moody algebra associated to g introduced in [J. Math. Phys. 59 (2018), 081701] is the universal enveloping algebra of (g) over cap [mu].
引用
收藏
页码:7713 / 7753
页数:41
相关论文
共 35 条
[1]   A characterization of affine Kac-Moody lie algebras [J].
Allison, BN ;
Berman, S ;
Gao, Y ;
Pianzola, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 185 (03) :671-688
[2]   Multiloop algebras, iterated loop algebras and extended affine Lie algebras of nullity 2 [J].
Allison, Bruce ;
Berman, Stephen ;
Pianzola, Arturo .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2014, 16 (02) :327-385
[3]  
Allison Bruce N., 1997, MEM AM MATH SOC, V126, px+122, DOI 10.1090/memo/0603
[4]  
[Anonymous], 2000, CONT MATH
[5]   BRAID GROUP ACTION AND QUANTUM AFFINE ALGEBRAS [J].
BECK, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 165 (03) :555-568
[6]   Quantum tori and the structure of elliptic quasi-simple Lie algebras [J].
Berman, S ;
Gao, Y ;
Krylyuk, YS .
JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 135 (02) :339-389
[7]   Twisted toroidal Lie algebras and Moody-Rao-Yokonuma presentation [J].
Chen, Fulin ;
Jing, Naihuan ;
Kong, Fei ;
Tan, Shaobin .
SCIENCE CHINA-MATHEMATICS, 2021, 64 (06) :1181-1200
[8]   Twisted quantum affinizations and their vertex representations [J].
Chen, Fulin ;
Jing, Naihuan ;
Kong, Fei ;
Tan, Shaobin .
JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (08)
[9]   From the Drinfeld Realization to the Drinfeld-Jimbo Presentation of Affine Quantum Algebras: Injectivity [J].
Damiani, Ilaria .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2015, 51 (01) :131-171
[10]   Drinfeld Realization of Affine Quantum Algebras: the Relations [J].
Damiani, Ilaria .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2012, 48 (03) :661-733