Nonlinear control scheme based on a second order sliding mode: application to DFIG supplied by five-level PWM inverter

被引:8
作者
Benzouaoui, Ahmed [1 ]
Ahmed-Foitih, Zoubir [2 ]
Khelfi, Mohamed Faycal [3 ]
机构
[1] Univ Sci & Technol Oran Mohamed BOUDIAF USTO, Elect Dept, BP 1505, El Mnaouer Oran, Algeria
[2] Univ Sci & Technol Oran USTO MB, Lab Power Syst Solar Energy & Automat, Oran, Algeria
[3] Univ Oran 1 Ahmed Ben Bella, Lab Res Ind Comp & Networks, Oran, Algeria
关键词
adaptive control; sliding mode; chattering; doubly fed induction generator; DFIG; five-level inverter; wind energy; FED INDUCTION GENERATOR; WIND TURBINES; DESIGN; SYSTEM;
D O I
10.1504/IJAAC.2019.100472
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Adaptive control is a set of approaches used for the automatic adjustment of the controller parameters in order to achieve or maintain a certain level of performance when the parameters of the control process vary over time or unknown. The parameters of the controller are adapted to ensure also that there is no overestimation of the gain with real a priori unknown value of uncertainties. The proposed control approach consists in using second-order sliding mode with a dynamically adapted control gain that guarantees the stability and robustness of the control law even with the presence of uncertainties and perturbation of the system. The control is applied by simulation (Matlab-Simulink) on a doubly fed induction generator (DFIG) integrated into a variable speed wind turbine and controlled by super twisting sliding mode control. The simulations indicate the efficiency of the proposed approach especially in the case of change of the reference speed and/or the parameters variation.
引用
收藏
页码:498 / 516
页数:19
相关论文
共 33 条
[1]   Control design and dynamic performance analysis of a wind turbine-induction generator unit [J].
Abdin, ES ;
Xu, W .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 2000, 15 (01) :91-96
[2]   A novel stand-alone induction generator system for AC and DC power applications [J].
Ahmed, Tarek ;
Nishida, Katsumi ;
Nakaoka, Mutsuo .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2007, 43 (06) :1465-1474
[3]   Vehicle ABS control system design via integral sliding mode [J].
Al-Samarraie, Shibly A. ;
Hamzah, Mohsin N. ;
Al-Nadawi, Yasir K. .
INTERNATIONAL JOURNAL OF AUTOMATION AND CONTROL, 2016, 10 (04) :356-374
[4]  
Anaya-Lara O., 2009, Wind Energy Generation : Modeling and Control
[5]  
Annal ASWP, 2017, INT J AUTOM CONTROL, V11, P262, DOI 10.1504/IJAAC.2017.10004062
[6]  
[Anonymous], 2015, ADV APPL SLIDING MOD
[7]  
Azar AT, 2015, STUD COMPUT INTELL, V576, P1, DOI 10.1007/978-3-319-11173-5_1
[8]   Five-level inverter voltage-space phasor generation for an open-end winding induction motor drive [J].
Baiju, MR ;
Gopakumar, K ;
Mohapatra, KK ;
Somasekhar, VT ;
Umanand, L .
IEE PROCEEDINGS-ELECTRIC POWER APPLICATIONS, 2003, 150 (05) :531-538
[9]   Second-Order Sliding Mode Control of a Doubly Fed Induction Generator Driven Wind Turbine [J].
Beltran, Brice ;
Benbouzid, Mohamed El Hachemi ;
Ahmed-Ali, Tarek .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 2012, 27 (02) :261-269
[10]   Experimental Validation of a Marine Current Turbine Simulator: Application to a Permanent Magnet Synchronous Generator-Based System Second-Order Sliding Mode Control [J].
Benelghali, Seifeddine ;
Benbouzid, Mohamed El Hachemi ;
Charpentier, Jean Frederic ;
Ahmed-Ali, Tarek ;
Munteanu, Iulian .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2011, 58 (01) :118-126