A Phylogenetic Analysis of Chloroplast Genomes Elucidates the Relationships of the Six Economically Important Brassica Species Comprising the Triangle of U

被引:65
作者
Li, Peirong [1 ,2 ]
Zhang, Shujiang [1 ]
Li, Fei [1 ]
Zhang, Shifan [1 ]
Zhang, Hui [1 ]
Wang, Xiaowu [1 ]
Sun, Rifei [1 ]
Bonnema, Guusje [2 ]
Borm, Theo J. A. [2 ]
机构
[1] Chinese Acad Agr Sci, Inst Vegetables & Flowers, Chinese Cabbage Dept, Beijing, Peoples R China
[2] Wageningen Univ & Res, Plant Breeding, Wageningen, Netherlands
关键词
chloroplast genome; assembly; Brassica; phylogeny; variation; divergence; LENGTH-POLYMORPHISMS RFLPS; NUCLEOTIDE SUBSTITUTION; PLANT MITOCHONDRIAL; OILSEED RAPE; DNA; NAPUS; SEQUENCES; EVOLUTION; ORIGIN; GENERA;
D O I
10.3389/fpls.2017.00111
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The Brassica genus comprises many economically important worldwide cultivated crops. The well-established model of the Brassica genus, U's triangle, consists of three basic diploid plant species (Brassica rapa, Brassica oleracea, and Brassica nigra) and three amphidiploid species (Brassica napus, Brassica juncea, and Brassica carinata) that arose through interspecific hybridizations. Despite being extensively studied because of its commercial relevance, several aspects of the origin of the Brassica species and the relationships within and among these six species still remain open questions. Here, we successfully de novo assembled 60 complete chloroplast genomes of Brassica genotypes of all six species. A complete map of the single nucleotide variants and insertions and deletions in the chloroplast genomes of different Brassica species was produced. The chloroplast genome consists of a Large and a Small Single Copy (LSC and SSC) region between two inverted repeats, and while these regions of chloroplast genomes have very different molecular evolutionary rates, phylogenetic analyses of different regions yielded no contradicting topologies and separated the Brassica genus into four clades. B. carinata and B. juncea share their chloroplast genome with one of their hybridization donors B. nigra and B. rapa, respectively, which fits the U model. B. rapa, surprisingly, shows evidence of two types of chloroplast genomes, with one type specific to some Italian broccoletto accessions. B. napus clearly has evidence for two independent hybridization events, as it contains either B. rapa chloroplast genomes. The divergence estimation suggests that B. nigra and B. carinata diverged from the main Brassica Glade 13.7 million years ago (Mya), while B. rapa and B. oleracea diverged at 2.18 Mya. The use of the complete chloroplast DNA sequence not only provides insights into comparative genome analysis but also paves the way for a better understanding of the phylogenetic relationships within the Brassica genus.
引用
收藏
页数:13
相关论文
共 64 条
[11]   A Phylogenetic Analysis of 34 Chloroplast Genomes Elucidates the Relationships between Wild and Domestic Species within the Genus Citrus [J].
Carbonell-Caballero, Jose ;
Alonso, Roberto ;
Ibanez, Victoria ;
Terol, Javier ;
Talon, Manuel ;
Dopazo, Joaquin .
MOLECULAR BIOLOGY AND EVOLUTION, 2015, 32 (08) :2015-2035
[12]   Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome [J].
Chalhoub, Boulos ;
Denoeud, France ;
Liu, Shengyi ;
Parkin, Isobel A. P. ;
Tang, Haibao ;
Wang, Xiyin ;
Chiquet, Julien ;
Belcram, Harry ;
Tong, Chaobo ;
Samans, Birgit ;
Correa, Margot ;
Da Silva, Corinne ;
Just, Jeremy ;
Falentin, Cyril ;
Koh, Chu Shin ;
Le Clainche, Isabelle ;
Bernard, Maria ;
Bento, Pascal ;
Noel, Benjamin ;
Labadie, Karine ;
Alberti, Adriana ;
Charles, Mathieu ;
Arnaud, Dominique ;
Guo, Hui ;
Daviaud, Christian ;
Alamery, Salman ;
Jabbari, Kamel ;
Zhao, Meixia ;
Edger, Patrick P. ;
Chelaifa, Houda ;
Tack, David ;
Lassalle, Gilles ;
Mestiri, Imen ;
Schnel, Nicolas ;
Le Paslier, Marie-Christine ;
Fan, Guangyi ;
Renault, Victor ;
Bayer, Philippe E. ;
Golicz, Agnieszka A. ;
Manoli, Sahana ;
Lee, Tae-Ho ;
Vinh Ha Dinh Thi ;
Chalabi, Smahane ;
Hu, Qiong ;
Fan, Chuchuan ;
Tollenaere, Reece ;
Lu, Yunhai ;
Battail, Christophe ;
Shen, Jinxiong ;
Sidebottom, Christine H. D. .
SCIENCE, 2014, 345 (6199) :950-953
[13]   A rapid DNA minipreparation method suitable for AFLP and other PCR applications [J].
Chen, DH ;
Ronald, PC .
PLANT MOLECULAR BIOLOGY REPORTER, 1999, 17 (01) :53-57
[14]   Comparative Analysis between Homoeologous Genome Segments of Brassica napus and Its Progenitor Species Reveals Extensive Sequence-Level Divergence [J].
Cheung, Foo ;
Trick, Martin ;
Drou, Nizar ;
Lim, Yong Pyo ;
Park, Jee-Young ;
Kwon, Soo-Jin ;
Kim, Jin-A ;
Scott, Rod ;
Pires, J. Chris ;
Paterson, Andrew H. ;
Town, Chris ;
Bancroft, Ian .
PLANT CELL, 2009, 21 (07) :1912-1928
[15]   Origin and phylogeny of chloroplasts revealed by a simple correlation analysis of complete genomes [J].
Chu, KH ;
Qi, J ;
Yu, ZG ;
Anh, V .
MOLECULAR BIOLOGY AND EVOLUTION, 2004, 21 (01) :200-206
[16]   jModelTest 2: more models, new heuristics and parallel computing [J].
Darriba, Diego ;
Taboada, Guillermo L. ;
Doallo, Ramon ;
Posada, David .
NATURE METHODS, 2012, 9 (08) :772-772
[17]   Bayesian Phylogenetics with BEAUti and the BEAST 1.7 [J].
Drummond, Alexei J. ;
Suchard, Marc A. ;
Xie, Dong ;
Rambaut, Andrew .
MOLECULAR BIOLOGY AND EVOLUTION, 2012, 29 (08) :1969-1973
[18]   PHYLOGENIES FROM MOLECULAR SEQUENCES - INFERENCE AND RELIABILITY [J].
FELSENSTEIN, J .
ANNUAL REVIEW OF GENETICS, 1988, 22 :521-565
[19]   New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0 [J].
Guindon, Stephane ;
Dufayard, Jean-Francois ;
Lefort, Vincent ;
Anisimova, Maria ;
Hordijk, Wim ;
Gascuel, Olivier .
SYSTEMATIC BIOLOGY, 2010, 59 (03) :307-321
[20]   Population structure and breeding value of a new type of Brassica juncea created by combining A and B genomes from related allotetraploids [J].
Gupta, Mehak ;
Gupta, Shilpa ;
Kumar, Hitesh ;
Kumar, Nitin ;
Banga, S. S. .
THEORETICAL AND APPLIED GENETICS, 2015, 128 (02) :221-234