Superconducting quantum circuits at the surface code threshold for fault tolerance

被引:1332
作者
Barends, R. [1 ]
Kelly, J. [1 ]
Megrant, A. [1 ]
Veitia, A. [2 ]
Sank, D. [1 ]
Jeffrey, E. [1 ]
White, T. C. [1 ]
Mutus, J. [1 ]
Fowler, A. G. [1 ,3 ]
Campbell, B. [1 ]
Chen, Y. [1 ]
Chen, Z. [1 ]
Chiaro, B. [1 ]
Dunsworth, A. [1 ]
Neill, C. [1 ]
O'Malley, P. [1 ]
Roushan, P. [1 ]
Vainsencher, A. [1 ]
Wenner, J. [1 ]
Korotkov, A. N. [2 ]
Cleland, A. N. [1 ]
Martinis, John M. [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[2] Univ Calif Riverside, Dept Elect Engn, Riverside, CA 92521 USA
[3] Univ Melbourne, Ctr Quantum Computat & Commun Technol, Sch Phys, Melbourne, Vic 3010, Australia
关键词
D O I
10.1038/nature13171
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A quantum computer can solve hard problems, such as prime factoring(1,2), database searching(3,4) and quantum simulation(5), at the cost of needing to protect fragile quantum states from error. Quantum error correction(6) provides this protection by distributing a logical state among many physical quantum bits (qubits) by means of quantum entanglement. Superconductivity is a useful phenomenon in this regard, because it allows the construction of large quantum circuits and is compatible with microfabrication. For superconducting qubits, the surface code approach to quantum computing(7) is a natural choice for error correction, because it uses only nearest-neighbour coupling and rapidly cycled entangling gates. The gate fidelity requirements are modest: the per-step fidelity threshold is only about 99 per cent. Here we demonstrate a universal set of logic gates in a superconducting multi-qubit processor, achieving an average single-qubit gate fidelity of 99.92 per cent and a two-qubit gate fidelity of up to 99.4 per cent. This places Josephson quantum computing at the fault-tolerance threshold for surface code error correction. Our quantum processor is a first step towards the surface code, using five qubits arranged in a linear array with nearest-neighbour coupling. As a further demonstration, we construct a five-qubit Greenberger-Horne-Zeilinger state(8,9) using the complete circuit and full set of gates. The results demonstrate that Josephson quantum computing is a high-fidelity technology, with a clear path to scaling up to large-scale, fault-tolerant quantum circuits.
引用
收藏
页码:500 / 503
页数:4
相关论文
共 30 条
[1]   Coherent Josephson Qubit Suitable for Scalable Quantum Integrated Circuits [J].
Barends, R. ;
Kelly, J. ;
Megrant, A. ;
Sank, D. ;
Jeffrey, E. ;
Chen, Y. ;
Yin, Y. ;
Chiaro, B. ;
Mutus, J. ;
Neill, C. ;
O'Malley, P. ;
Roushan, P. ;
Wenner, J. ;
White, T. C. ;
Cleland, A. N. ;
Martinis, John M. .
PHYSICAL REVIEW LETTERS, 2013, 111 (08)
[2]   Towards fault-tolerant quantum computing with trapped ions [J].
Benhelm, Jan ;
Kirchmair, Gerhard ;
Roos, Christian F. ;
Blatt, Rainer .
NATURE PHYSICS, 2008, 4 (06) :463-466
[3]   Single-qubit-gate error below 10-4 in a trapped ion [J].
Brown, K. R. ;
Wilson, A. C. ;
Colombe, Y. ;
Ospelkaus, C. ;
Meier, A. M. ;
Knill, E. ;
Leibfried, D. ;
Wineland, D. J. .
PHYSICAL REVIEW A, 2011, 84 (03)
[4]  
Choi T., 2014, OPTIMAL QUANTUM CONT
[5]  
Chow J. M., 2013, IMPLEMENTING STRAND
[6]   Experimental implementation of fast quantum searching [J].
Chuang, IL ;
Gershenfeld, N ;
Kubinec, M .
PHYSICAL REVIEW LETTERS, 1998, 80 (15) :3408-3411
[7]   Process verification of two-qubit quantum gates by randomized benchmarking [J].
Corcoles, A. D. ;
Gambetta, Jay M. ;
Chow, Jerry M. ;
Smolin, John A. ;
Ware, Matthew ;
Strand, Joel ;
Plourde, B. L. T. ;
Steffen, M. .
PHYSICAL REVIEW A, 2013, 87 (03)
[8]   Preparation and measurement of three-qubit entanglement in a superconducting circuit [J].
DiCarlo, L. ;
Reed, M. D. ;
Sun, L. ;
Johnson, B. R. ;
Chow, J. M. ;
Gambetta, J. M. ;
Frunzio, L. ;
Girvin, S. M. ;
Devoret, M. H. ;
Schoelkopf, R. J. .
NATURE, 2010, 467 (7315) :574-578
[9]   Demonstration of two-qubit algorithms with a superconducting quantum processor [J].
DiCarlo, L. ;
Chow, J. M. ;
Gambetta, J. M. ;
Bishop, Lev S. ;
Johnson, B. R. ;
Schuster, D. I. ;
Majer, J. ;
Blais, A. ;
Frunzio, L. ;
Girvin, S. M. ;
Schoelkopf, R. J. .
NATURE, 2009, 460 (7252) :240-244
[10]   SIMULATING PHYSICS WITH COMPUTERS [J].
FEYNMAN, RP .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1982, 21 (6-7) :467-488