Long-time dynamics of an extensible plate equation with thermal memory

被引:66
作者
Aguiar Barbosa, Alisson Rafael [1 ]
Ma, To Fu [2 ]
机构
[1] Univ Fed Triangulo Mineiro, Inst Ciencias Tecnol & Exatas, BR-38025180 Uberaba, MG, Brazil
[2] Univ Sao Paulo, Inst Ciencias Matemat & Comp, BR-13566590 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Plate equation; Global attractors; Thermoelasticity; Memory; ASYMPTOTIC STABILITY; GLOBAL ATTRACTORS; HEAT-CONDUCTION; ENERGY DECAY; BEHAVIOR; BEAM; SYSTEMS; MODEL;
D O I
10.1016/j.jmaa.2014.02.042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work is concerned with long-time dynamics of solutions of extensible plate equations with thermal memory. The problem corresponds to a model of thermoelasticity based on a theory of non-Fourier heat flux. By considering the case where rotational inertia is present we show that the thermal dissipation is sufficient to stabilize the system and guarantees the existence of a finite-dimensional global attractor. In addition, the existence of exponential attractors is also considered. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:143 / 165
页数:23
相关论文
共 35 条
[1]  
[Anonymous], 1991, LEZIONI LINCEI 1988
[2]  
[Anonymous], 1994, Exponential attractors for dissipative evolution equations
[3]  
[Anonymous], 1988, APPL MATH SCI
[4]  
Babin A.V., 1992, STUD MATH APPL, V25
[5]   STABILITY THEORY FOR AN EXTENSIBLE BEAM [J].
BALL, JM .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1973, 14 (03) :399-418
[6]  
Berger H.M., 1955, J APPL MECH, V22, P465
[7]   Global existence and asymptotic stability for the nonlinear and generalized damped extensible plate equation [J].
Cavalcanti, MM ;
Cavalcanti, VND ;
Soriano, JA .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2004, 6 (05) :705-731
[8]   Attractors for Second-Order Evolution Equations with a Nonlinear Damping [J].
Igor Chueshov ;
Irena Lasiecka .
Journal of Dynamics and Differential Equations, 2004, 16 (2) :469-512
[9]  
Chueshov I, 2010, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-0-387-87712-9
[10]  
Chueshov I, 2008, MEM AM MATH SOC, V195, pVIII