AN IMPLICIT MIDPOINT SPECTRAL APPROXIMATION OF NONLOCAL CAHN-HILLIARD EQUATIONS

被引:28
作者
Benesova, Barbora [1 ]
Melcher, Christof [1 ]
Sueli, Endre [2 ]
机构
[1] Rhein Westfal TH Aachen, Dept Math 1, D-52056 Aachen, Germany
[2] Univ Oxford, Math Inst, Oxford OX2 6GG, England
关键词
Cahn-Hilliard equation; Ohta-Kawasaki equation; Fourier-Galerkin approximation; midpoint scheme; MICROPHASE SEPARATION; DIBLOCK COPOLYMERS; PHASE-DIAGRAM;
D O I
10.1137/130940736
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper is concerned with the convergence analysis of a numerical method for nonlocal Cahn-Hilliard equations. The temporal discretization is based on the implicit midpoint rule and a Fourier spectral discretization is used with respect to the spatial variables. The sequence of numerical approximations in shown to be bounded in various norms, uniformly with respect to the discretization parameters, and optimal order bounds on the global error of the scheme are derived. The uniform bounds on the sequence of numerical solutions as well as the error bounds hold unconditionally, in the sense that no restriction on the size of the time step in terms of the spatial discretization parameter needs to be assumed.
引用
收藏
页码:1466 / 1496
页数:31
相关论文
共 24 条
[1]  
[Anonymous], 2000, SIAM
[2]  
[Anonymous], 1989, Internat. Ser. Numer. Math, DOI DOI 10.1007/978-3-0348-9148-6_3
[3]   Computation of multiphase systems with phase field models [J].
Badalassi, VE ;
Ceniceros, HD ;
Banerjee, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 190 (02) :371-397
[4]   FREE ENERGY OF A NONUNIFORM SYSTEM .1. INTERFACIAL FREE ENERGY [J].
CAHN, JW ;
HILLIARD, JE .
JOURNAL OF CHEMICAL PHYSICS, 1958, 28 (02) :258-267
[5]  
CANUTO C, 1982, MATH COMPUT, V38, P67, DOI 10.1090/S0025-5718-1982-0637287-3
[6]   On the derivation of a density functional theory for microphase separation of diblock copolymers [J].
Choksi, R ;
Ren, XF .
JOURNAL OF STATISTICAL PHYSICS, 2003, 113 (1-2) :151-176
[7]   2D Phase Diagram for Minimizers of a Cahn-Hilliard Functional with Long-Range Interactions [J].
Choksi, Rustum ;
Maras, Mirjana ;
Williams, J. F. .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2011, 10 (04) :1344-1362
[8]   ON THE PHASE DIAGRAM FOR MICROPHASE SEPARATION OF DIBLOCK COPOLYMERS: AN APPROACH VIA A NONLOCAL CAHN-HILLIARD FUNCTIONAL [J].
Choksi, Rustum ;
Peletier, Mark A. ;
Williams, J. F. .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2009, 69 (06) :1712-1738
[9]  
Condette N, 2011, MATH COMPUT, V80, P205, DOI 10.1090/S0025-5718-10-02365-3
[10]   NUMERICAL-ANALYSIS OF A CONTINUUM MODEL OF PHASE-TRANSITION [J].
DU, Q ;
NICOLAIDES, RA .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (05) :1310-1322