Distribution-Aware Coordinate Representation for Human Pose Estimation

被引:378
作者
Zhang, Feng [1 ]
Zhu, Xiatian [2 ]
Dai, Hanbin [3 ]
Ye, Mao [1 ]
Zhu, Ce [4 ]
机构
[1] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu, Peoples R China
[2] Univ Surrey, Ctr Vis Speech & Signal Proc, Guildford, Surrey, England
[3] Univ Elect Sci & Technol China, Sch Automat Engn, Chengdu, Peoples R China
[4] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu, Peoples R China
来源
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) | 2020年
基金
中国国家自然科学基金;
关键词
NETWORK;
D O I
10.1109/CVPR42600.2020.00712
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
While being the de facto standard coordinate representation for human pose estimation, heatmap has not been investigated in-depth. This work fills this gap. For the first time, we find that the process of decoding the predicted heatmaps into the final joint coordinates in the original image space is surprisingly significant for the performance. We further probe the design limitations of the standard coordinate decoding method, and propose a more principled distribution-aware decoding method. Also, we improve the standard coordinate encoding process (i.e. transforming ground-truth coordinates to heatmaps) by generating unbiased/accurate heatmaps. Taking the two together, we formulate a novel Distribution-Aware coordinate Representation of Keypoints (DARK) method. Serving as a model-agnostic plug-in, DARK brings about significant performance boost to existing human pose estimation models. Extensive experiments show that DARK yields the best results on two common benchmarks, MPII and COCO. Besides, DARK achieves the 2nd place entry in the ICCV 2019 COCO Keypoints Challenge. The code is available online [36].
引用
收藏
页码:7091 / 7100
页数:10
相关论文
共 37 条
[1]   2D Human Pose Estimation: New Benchmark and State of the Art Analysis [J].
Andriluka, Mykhaylo ;
Pishchulin, Leonid ;
Gehler, Peter ;
Schiele, Bernt .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, :3686-3693
[2]  
[Anonymous], 2017, IEEE INT C COMP VIS
[3]   Recurrent Human Pose Estimation [J].
Belagiannis, Vasileios ;
Zisserman, Andrew .
2017 12TH IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC FACE AND GESTURE RECOGNITION (FG 2017), 2017, :468-475
[4]   Human Pose Estimation with Iterative Error Feedback [J].
Carreira, Joao ;
Agrawal, Pulkit ;
Fragkiadaki, Katerina ;
Malik, Jitendra .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :4733-4742
[5]  
Chen Xianjie, 2014, PROC ADV NEURAL INF
[6]   Cascaded Pyramid Network for Multi-Person Pose Estimation [J].
Chen, Yilun ;
Wang, Zhicheng ;
Peng, Yuxiang ;
Zhang, Zhiqiang ;
Yu, Gang ;
Sun, Jian .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :7103-7112
[7]   Structured Feature Learning for Pose Estimation [J].
Chu, Xiao ;
Ouyang, Wanli ;
Li, Hongsheng ;
Wang, Xiaogang .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :4715-4723
[8]  
Chu Xiao, 2016, ADV NEUR IN, V29
[9]  
Dai H, 2020, ARXIV200307232
[10]  
Fan XC, 2015, PROC CVPR IEEE, P1347, DOI 10.1109/CVPR.2015.7298740