GPU accelerated implementation of NCI calculations using promolecular density

被引:9
|
作者
Rubez, Gaetan [1 ,2 ,3 ]
Etancelin, Jean-Matthieu [2 ]
Vigouroux, Xavier [1 ]
Krajecki, Michael [2 ]
Boisson, Jean-Charles [2 ]
Henon, Eric [3 ]
机构
[1] ATOS Co, Parallel Comp Div, 1 Rue Provence, F-38130 Echirolles, France
[2] Univ Reims, Dept Comp Sci, CReSTIC Ctr Rech STIC, EA3804, F-51687 Reims, France
[3] Univ Reims, UMR CNRS 7312, Dept Chem, ICMR, F-51687 Reims, France
关键词
graphics processing unit; noncovalent interactions; high performance computing; CUDA; electron density; NCI; MOLECULAR-DYNAMICS SIMULATIONS; NONCOVALENT INTERACTION; ELECTRON;
D O I
10.1002/jcc.24786
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The NCI approach is a modern tool to reveal chemical noncovalent interactions. It is particularly attractive to describe ligand-protein binding. A custom implementation for NCI using promolecular density is presented. It is designed to leverage the computational power of NVIDIA graphics processing unit (GPU) accelerators through the CUDA programming model. The code performances of three versions are examined on a test set of 144 systems. NCI calculations are particularly well suited to the GPU architecture, which reduces drastically the computational time. On a single compute node, the dual-GPU version leads to a 39-fold improvement for the biggest instance compared to the optimal OpenMP parallel run (C code, icc compiler) with 16 CPU cores. Energy consumption measurements carried out on both CPU and GPU NCI tests show that the GPU approach provides substantial energy savings. (c) 2017 Wiley Periodicals, Inc.
引用
收藏
页码:1071 / 1083
页数:13
相关论文
共 50 条
  • [21] A GPU-Accelerated Density-Based Clustering Algorithm
    Loh, Woong-Kee
    Kim, Young-Kuk
    2014 IEEE FOURTH INTERNATIONAL CONFERENCE ON BIG DATA AND CLOUD COMPUTING (BDCLOUD), 2014, : 775 - 776
  • [22] GPU-Accelerated Feature Selection for Outlier Detection using the Local Kernel Density Ratio
    Azmandian, Fatemeh
    Yilmazer, Ayse
    Dy, Jennifer G.
    Aslam, Javed A.
    Kaeli, David R.
    12TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2012), 2012, : 51 - 60
  • [23] Accelerated Pistols Recognition by Using a GPU Device
    Martinez-Diaz, Saul
    Alejandro Palacios-Alvarado, Christian
    Martinez Chavelas, Saul
    PROCEEDINGS OF THE 2017 IEEE XXIV INTERNATIONAL CONFERENCE ON ELECTRONICS, ELECTRICAL ENGINEERING AND COMPUTING (INTERCON), 2017,
  • [24] VIDEO TRANSCODING USING GPU ACCELERATED DECODER
    Hsu, Wei-Lien
    PARALLEL PROCESSING FOR IMAGING APPLICATIONS, 2011, 7872
  • [25] A general accelerated R package using GPU
    Huang, Jie
    Zhuang, Bojin
    Su, Fei
    2015 IEEE INTERNATIONAL CONFERENCE ON SMART CITY/SOCIALCOM/SUSTAINCOM (SMARTCITY), 2015, : 605 - 608
  • [26] Accelerated implementation for testing IID assumption of NIST SP 800-90B using GPU
    Kim, Yewon
    Yeom, Yongjin
    PEERJ COMPUTER SCIENCE, 2021, : 1 - 29
  • [27] Accelerated implementation for testing IID assumption of NIST SP 800-90B using GPU
    Kim, Yewon
    Yeom, Yongjin
    PeerJ Computer Science, 2021, 7 : 1 - 29
  • [28] Clinical Implementation of a GPU Accelerated Pencil Beam Dose Calculation Algorithm
    Chen, H.
    Xiao, Z.
    Du, D.
    Yang, D.
    Mutic, S.
    Li, H.
    MEDICAL PHYSICS, 2012, 39 (06) : 3823 - 3823
  • [29] GPU-Accelerated implementation of a genetically optimized image encryption algorithm
    Bharadwaj, Brijgopal
    Banu, J. Saira
    Madiajagan, M.
    Ghalib, Muhammad Rukunuddin
    Castillo, Oscar
    Shankar, Achyut
    SOFT COMPUTING, 2021, 25 (22) : 14413 - 14428
  • [30] GPU-Accelerated implementation of a genetically optimized image encryption algorithm
    Brijgopal Bharadwaj
    J. Saira Banu
    M. Madiajagan
    Muhammad Rukunuddin Ghalib
    Oscar Castillo
    Achyut Shankar
    Soft Computing, 2021, 25 : 14413 - 14428