GPU accelerated implementation of NCI calculations using promolecular density

被引:9
|
作者
Rubez, Gaetan [1 ,2 ,3 ]
Etancelin, Jean-Matthieu [2 ]
Vigouroux, Xavier [1 ]
Krajecki, Michael [2 ]
Boisson, Jean-Charles [2 ]
Henon, Eric [3 ]
机构
[1] ATOS Co, Parallel Comp Div, 1 Rue Provence, F-38130 Echirolles, France
[2] Univ Reims, Dept Comp Sci, CReSTIC Ctr Rech STIC, EA3804, F-51687 Reims, France
[3] Univ Reims, UMR CNRS 7312, Dept Chem, ICMR, F-51687 Reims, France
关键词
graphics processing unit; noncovalent interactions; high performance computing; CUDA; electron density; NCI; MOLECULAR-DYNAMICS SIMULATIONS; NONCOVALENT INTERACTION; ELECTRON;
D O I
10.1002/jcc.24786
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The NCI approach is a modern tool to reveal chemical noncovalent interactions. It is particularly attractive to describe ligand-protein binding. A custom implementation for NCI using promolecular density is presented. It is designed to leverage the computational power of NVIDIA graphics processing unit (GPU) accelerators through the CUDA programming model. The code performances of three versions are examined on a test set of 144 systems. NCI calculations are particularly well suited to the GPU architecture, which reduces drastically the computational time. On a single compute node, the dual-GPU version leads to a 39-fold improvement for the biggest instance compared to the optimal OpenMP parallel run (C code, icc compiler) with 16 CPU cores. Energy consumption measurements carried out on both CPU and GPU NCI tests show that the GPU approach provides substantial energy savings. (c) 2017 Wiley Periodicals, Inc.
引用
收藏
页码:1071 / 1083
页数:13
相关论文
共 50 条
  • [1] GPU Accelerated Implementation of Density Functional Theory for Hybrid QM/MM Simulations
    Nitsche, Matias A.
    Ferreria, Manuel
    Mocskos, Esteban E.
    Gonzalez Lebrero, Mariano C.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2014, 10 (03) : 959 - 967
  • [2] Implementation of Accelerated BCH Decoders on GPU
    Qi, Xiaoxia
    Ma, Xiao
    Li, Dou
    Zhao, Yuping
    2013 INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP 2013), 2013,
  • [3] Efficient Shift-and-Invert Preconditioning for Multi-GPU Accelerated Density Functional Calculations
    Woo, Jeheon
    Kim, Woo Youn
    Choi, Sunghwan
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2024, 20 (17) : 7443 - 7452
  • [4] GPU-accelerated DEM implementation with CUDA
    Qi, Ji
    Li, Kuan-Ching
    Jiang, Hai
    Zhou, Qingguo
    Yang, Lei
    INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2015, 11 (03) : 330 - 337
  • [5] Accelerated ray tracing for radiotherapy dose calculations on a GPU
    de Greef, M.
    Crezee, J.
    van Eijk, J. C.
    Pool, R.
    Bel, A.
    MEDICAL PHYSICS, 2009, 36 (09) : 4095 - 4102
  • [6] GPU-ACCELERATED COLLAPSED CONE DOSE CALCULATIONS
    Kloppenborg, B.
    Ahnesjo, A.
    Loos, R.
    RADIOTHERAPY AND ONCOLOGY, 2010, 96 : S487 - S487
  • [7] ANALYSIS OF THE BASIC IMPLEMENTATION ASPECTS OF HARDWARE-ACCELERATED DENSITY FUNCTIONAL THEORY CALCULATIONS
    Wielgosz, Maciej
    Mazur, Grzegorz
    Makowski, Marcin
    Jamro, Ernest
    Russek, Pawel
    Wiatr, Kazimierz
    COMPUTING AND INFORMATICS, 2010, 29 (06) : 989 - 1000
  • [8] Use of promolecular ASA density functions as a general algorithm to obtain starting MO in SCF calculations
    Amat, L
    Carbó-Dorca, R
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2002, 87 (02) : 59 - 67
  • [9] GPU Accelerated Parallel Implementation of Linear Programming Algorithms
    Saha, Ratul Kishore
    Pradhan, Ashutosh
    Ghosh, Tiash
    Jenamani, Mamata
    Singh, Sanjai Kumar
    Routray, Aurobinda
    INFORMATION INTEGRATION AND WEB INTELLIGENCE, IIWAS 2022, 2022, 13635 : 378 - 384
  • [10] The Implementation of a Virtual Desktop Infrastructure with GPU Accelerated on OpenStack
    Yang, Chao-Tung
    Liu, Jung-Chun
    Lee, Jheng-Yue
    Chang, Chih-Hung
    Lai, Chuan-Lin
    Kuo, Chia-Chen
    2018 15TH INTERNATIONAL SYMPOSIUM ON PERVASIVE SYSTEMS, ALGORITHMS AND NETWORKS (I-SPAN 2018), 2018, : 366 - 370