Trans-Planckian effects in warm inflation

被引:3
作者
Nezhad, H. Bouzari [1 ]
Shojai, F. [1 ,2 ]
机构
[1] Univ Tehran, Dept Phys, POB 14395-547, Tehran, Iran
[2] Inst Res Fundamental Sci IPM, Sch Phys, POB 19395-5531, Tehran, Iran
来源
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS | 2019年 / 07期
关键词
cosmological perturbation theory; inflation; quantum field theory on curved space; transplanckian physics; DENSITY PERTURBATIONS; DYNAMICS; EXPANSION; UNIVERSE; VACUUM; SCALE;
D O I
10.1088/1475-7516/2019/07/002
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study the effect of a non-trivial vacuum prescription on warm inflation observables, namely the power spectrum of the comoving curvature perturbation. Non-trivial choice of vacuum, can provide information about trans-Planckian physics. Traditionally, the initial condition for inflation is chosen to be the usual Bunch-Davies vacuum. Another more reasonable choice of vacuum is the so-called alpha-vacua. Because the duration of inflation is not infinite, as it is assumed in the Bunch-Davies case, imposing the initial condition at infinite past is not sensible and one must utilize another vacuum prescription. In this paper, working in the slow-roll regime during warm inflation, the initial condition for inflaton fluctuations is imposed at finite past, i.e. the alpha-vacua. We show that this non-trivial vacuum prescription results in oscillatory correction to the comoving curvature power spectrum, which is scale dependent both in amplitude and frequency. Having obtained this scale dependent power spectrum, we consider its late time footprints and compare our results with observational data and other proposed models for the comoving curvature power spectrum.
引用
收藏
页数:24
相关论文
共 60 条
  • [1] PARTICLE-PRODUCTION IN THE NEW INFLATIONARY COSMOLOGY
    ABBOTT, LF
    FARHI, E
    WISE, MB
    [J]. PHYSICS LETTERS B, 1982, 117 (1-2) : 29 - 33
  • [2] Planck 2015 results XIII. Cosmological parameters
    Ade, P. A. R.
    Aghanim, N.
    Arnaud, M.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Banday, A. J.
    Barreiro, R. B.
    Bartlett, J. G.
    Bartolo, N.
    Battaner, E.
    Battye, R.
    Benabed, K.
    Benoit, A.
    Benoit-Levy, A.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Catalano, A.
    Challinor, A.
    Chamballu, A.
    Chary, R. -R.
    Chiang, H. C.
    Chluba, J.
    Christensen, P. R.
    Church, S.
    Clements, D. L.
    Colombi, S.
    Colombo, L. P. L.
    Combet, C.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davies, R. D.
    Davis, R. J.
    de Bernardis, P.
    [J]. ASTRONOMY & ASTROPHYSICS, 2016, 594
  • [3] REHEATING AN INFLATIONARY UNIVERSE
    ALBRECHT, A
    STEINHARDT, PJ
    TURNER, MS
    WILCZEK, F
    [J]. PHYSICAL REVIEW LETTERS, 1982, 48 (20) : 1437 - 1440
  • [4] Arfken G., 2012, Mathematical Methods for Physicists: A Comprehensive Guide
  • [5] Conservative constraints on early cosmology with MONTE PYTHON']PYTHON
    Audren, Benjamin
    Lesgourgues, Julien
    Benabed, Karim
    Prunet, Simon
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2013, (02):
  • [6] Inflation dynamics and reheating
    Bassett, Bruce A.
    Tsujikawa, Shinji
    Wands, David
    [J]. REVIEWS OF MODERN PHYSICS, 2006, 78 (02) : 537 - 589
  • [7] The warm inflationary universe
    Berera, A
    [J]. CONTEMPORARY PHYSICS, 2006, 47 (01) : 33 - 49
  • [8] Thermal properties of an inflationary universe
    Berera, A
    [J]. PHYSICAL REVIEW D, 1996, 54 (04): : 2519 - 2534
  • [9] THERMALLY-INDUCED DENSITY PERTURBATIONS IN THE INFLATION ERA
    BERERA, A
    FANG, LZ
    [J]. PHYSICAL REVIEW LETTERS, 1995, 74 (11) : 1912 - 1915
  • [10] WARM INFLATION
    BERERA, A
    [J]. PHYSICAL REVIEW LETTERS, 1995, 75 (18) : 3218 - 3221