Astheno-Kahler and strong KT metrics

被引:0
作者
Fino, Anna [1 ]
Tomassini, Adriano [2 ]
机构
[1] Univ Turin, Dipartimento Matemat, Via Carlo Alberto 10, I-10123 Turin, Italy
[2] Univ Parma, Dipartimento Matemat, I-43100 Parma, Italy
来源
GEOMETRY AND PHYSICS | 2009年 / 1130卷
关键词
strong Kahler with torsion; astheno-Kahler; Bismut connection; blow-up; resolution; VANISHING THEOREMS; ALGEBRAIC VARIETY; MANIFOLDS; TORSION; SINGULARITIES; NILMANIFOLDS; RESOLUTION; GEOMETRY; FIELD;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A Hermitian metric on a complex manifold of complex dimension n is called astheno Kahler if its fundamental 2-form F satisfies the condition partial derivative(partial derivative) over barF(n-2) = 0 and it is strong KT if F is partial derivative(partial derivative) over bar -closed. We review some properties of strong KT and astheno-Kahler metrics. Examples of compact manifolds endowed with this type of Hermitian metrics are also given. This note is based on the results obtained in [11, 12].
引用
收藏
页码:152 / +
页数:2
相关论文
共 26 条
[1]   PLURISUBHARMONIC CURRENTS AND THEIR EXTENSION ACROSS ANALYTIC SUBSETS [J].
ALESSANDRINI, L ;
BASSANELLI, G .
FORUM MATHEMATICUM, 1993, 5 (06) :577-602
[2]   Vanishing theorems on Hermitian manifolds [J].
Alexandrov, B ;
Ivanov, S .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2001, 14 (03) :251-265
[3]  
[Anonymous], 1956, Ann. Sci. Ec. Norm. Super.
[4]   Generalized Kahler manifolds, commuting complex structures, and split tangent bundles [J].
Apostolov, Vestislav ;
Gualtieri, Marco .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 271 (02) :561-575
[5]  
Cavalcanti G. R., 2004, J. Symplectic Geo, V2, P393, DOI DOI 10.4310/JSG.2004.V2.N3.A5
[6]   Symplectic resolutions, Lefschetz property and formality [J].
Cavalcanti, Gil R. ;
Fernandez, Marisa ;
Munoz, Vicente .
ADVANCES IN MATHEMATICS, 2008, 218 (02) :576-599
[7]   Dolbeault cohomology of compact nilmanifolds [J].
Console, S ;
Fino, A .
TRANSFORMATION GROUPS, 2001, 6 (02) :111-124
[8]   Properties of manifolds with skew-symmetric torsion and special holonomy [J].
Fino, A ;
Grantcharov, G .
ADVANCES IN MATHEMATICS, 2004, 189 (02) :439-450
[9]   Families of strong KT structures in six dimensions [J].
Fino, A ;
Parton, M ;
Salamon, S .
COMMENTARII MATHEMATICI HELVETICI, 2004, 79 (02) :317-340
[10]  
FINO A, ARXIVMATHDG08060735