Pricing Bermudan Options via Multilevel Approximation Methods

被引:11
作者
Belomestny, Denis [1 ]
Dickmann, Fabian [1 ]
Nagapetyan, Tigran [2 ]
机构
[1] Duisburg Essen Univ, Dept Math, D-45127 Essen, Germany
[2] Weierstrass Inst Appl Math, D-10117 Berlin, Germany
来源
SIAM JOURNAL ON FINANCIAL MATHEMATICS | 2015年 / 6卷 / 01期
关键词
Bermudan options; multilevel Monte Carlo; mesh method; global regression; complexity analysis; SIMULATION; REGRESSION;
D O I
10.1137/130912426
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
In this article we propose a novel approach to reducing the computational complexity of various approximation methods for pricing discrete time American or Bermudan options. Given a sequence of continuation values estimates corresponding to different levels of spatial approximation, we propose a multilevel low biased estimate for the price of the option. It turns out that the resulting complexity gain can be of order epsilon(-1) with e denoting the desired precision. The performance of the proposed multilevel algorithms is illustrated by a numerical example.
引用
收藏
页码:448 / 466
页数:19
相关论文
共 15 条
[1]  
Agarwal A, 2013, WINT SIMUL C PROC, P701, DOI 10.1109/WSC.2013.6721463
[2]  
Andersen L, 1999, J COMPUT FINANC, V3, P5, DOI DOI 10.21314/JCF.1999.041
[3]   Multilevel dual approach for pricing American style derivatives [J].
Belomestny, Denis ;
Schoenmakers, John ;
Dickmann, Fabian .
FINANCE AND STOCHASTICS, 2013, 17 (04) :717-742
[5]   Pricing American-style securities using simulation [J].
Broadie, M ;
Glasserman, P .
JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 1997, 21 (8-9) :1323-1352
[6]  
Broadie M., 2004, Journal of Computational Finance, V7, P35, DOI [10.21314/JCF.2004.117, DOI 10.21314/JCF.2004.117]
[7]   Valuation of the early-exercise price for options using simulations and nonparametric regression [J].
Carriere, JF .
INSURANCE MATHEMATICS & ECONOMICS, 1996, 19 (01) :19-30
[8]  
DICKMANN F., 2014, ARXIV14020243
[9]   Monte Carlo algorithms for optimal stopping and statistical learning [J].
Egloff, D .
ANNALS OF APPLIED PROBABILITY, 2005, 15 (02) :1396-1432
[10]   Multilevel Monte Carlo path simulation [J].
Giles, Michael B. .
OPERATIONS RESEARCH, 2008, 56 (03) :607-617