Prediction of hematoma expansion in spontaneous intracerebral hemorrhage using support vector machine

被引:63
作者
Liu, Jinjin [1 ]
Xu, Haoli [1 ]
Chen, Qian [1 ]
Zhang, Tingting [1 ]
Sheng, Wenshuang [1 ]
Huang, Qun [1 ]
Song, Jiawen [2 ]
Huang, Dingpin [1 ]
Lan, Li [1 ]
Li, Yanxuan [1 ]
Chen, Weijian [1 ]
Yang, Yunjun [1 ]
机构
[1] Wenzhou Med Univ, Dept Radiol, Affiliated Hosp 1, Wenzhou 325000, Zhejiang, Peoples R China
[2] Wenzhou Med Univ, Dept Radiol, Affiliated Hosp 2, Wenzhou 325000, Zhejiang, Peoples R China
来源
EBIOMEDICINE | 2019年 / 43卷
关键词
Spontaneous intracerebral hemorrhage; Hematoma; CT; Stroke; Support vector machine; BLOOD-PRESSURE REDUCTION; COMPUTED-TOMOGRAPHY; SIGN; VOLUME; CLASSIFICATION; GROWTH; TRIAL;
D O I
10.1016/j.ebiom.2019.04.040
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Spontaneous intracerebral hemorrhage (ICH) is a devastating disease with high mortality rate. This study aimed to predict hematoma expansion in spontaneous ICH from routinely available variables by using support vector machine (SVM) method. Methods: We retrospectively reviewed 1157 patients with spontaneous ICH who underwent initial computed tomography (CT) scan within 6 h and follow-up CT scan within 72 h from symptom onset in our hospital between September 2013 and August 2018. Hematoma region was manually segmented at each slice to guarantee the measurement accuracy of hematoma volume. Hematoma expansion was defined as a proportional increase of hematoma volume > 33% or an absolute growth of hematoma volume > 6 mL from initial Cr scan to follow-up CT scan. Univariate and multivariate analyses were performed to assess the association between clinical variables and hematoma expansion. SVM machine learning model was developed to predict hematoma expansion. Findings: 246 of 1157 (21.3%) patients experienced hematoma expansion. Multivariate analyses revealed the following 6 independent factors associated with hematoma expansion: male patient (odds ratio [OR] = 1.82), time to initial CT scan (OR = 0.73), Glasgow Coma Scale (OR = 0.86), fibrinogen level (OR = 0.72), black hole sign (OR = 2.52), and blend sign (OR = 4.03). The SVM model achieved a mean sensitivity of 81.3%, specificity of 84.8%, overall accuracy of 83.3%, and area under receiver operating characteristic curve (AUC) of 0.89 in prediction of hematoma expansion. Interpretation: The designed SVM model presented good performance in predicting hematoma expansion from routinely available variables. (C) 2019 The Authors. Published by Elsevier B.V.
引用
收藏
页码:454 / 459
页数:6
相关论文
共 39 条
  • [1] Intensive blood pressure reduction in acute cerebral haemorrhage trial (INTERACT): a randomised pilot trial
    Anderson, Craig S.
    Huang, Yining
    Wang, Ji Guang
    Arima, Hisatomi
    Neal, Bruce
    Peng, Bin
    Heeley, Emma
    Skulina, Christian
    Parsons, Mark W.
    Kim, Jong Sung
    Tao, Qing Ling
    Li, Yue Chun
    Jiang, Jian Dong
    Tai, Li Wen
    Zhang, Jin Li
    Xu, En
    Cheng, Yan
    Heritier, Stephan
    Morgenstern, Lewis B.
    Chalmers, John
    [J]. LANCET NEUROLOGY, 2008, 7 (05) : 391 - 399
  • [2] Aviv R I, 2008, AJNR Am J Neuroradiol, V29, pE80, DOI 10.3174/ajnr.A1140
  • [3] Quantitative CT Densitometry for Predicting Intracerebral Hemorrhage Growth
    Barras, C. D.
    Tress, B. M.
    Christensen, S.
    Collins, M.
    Desmond, P. M.
    Skolnick, B. E.
    Mayer, S. A.
    Davis, S. M.
    [J]. AMERICAN JOURNAL OF NEURORADIOLOGY, 2013, 34 (06) : 1139 - 1144
  • [4] Intracerebral Hematoma Morphologic Appearance on Noncontrast Computed Tomography Predicts Significant Hematoma Expansion
    Blacquiere, Dylan
    Demchuk, Andrew M.
    Al-Hazzaa, Mohammed
    Deshpande, Anirudda
    Petrcich, William
    Aviv, Richard I.
    Rodriguez-Luna, David
    Molina, Carlos A.
    Silva Blas, Yolanda
    Dzialowski, Imanuel
    Czlonkowska, Anna
    Boulanger, Jean-Martin
    Lum, Cheemun
    Gubitz, Gord
    Padma, Vasantha
    Roy, Jayanta
    Kase, Carlos S.
    Bhatia, Rohit
    Hill, Michael D.
    Dowlatshahi, Dar
    [J]. STROKE, 2015, 46 (11) : 3111 - 3116
  • [5] VOLUME OF INTRACEREBRAL HEMORRHAGE - A POWERFUL AND EASY-TO-USE PREDICTOR OF 30-DAY MORTALITY
    BRODERICK, JP
    BROTT, TG
    DULDNER, JE
    TOMSICK, T
    HUSTER, G
    [J]. STROKE, 1993, 24 (07) : 987 - 993
  • [6] Hematoma Expansion following Acute Intracerebral Hemorrhage
    Brouwers, H. Bart
    Greenberg, Steven M.
    [J]. CEREBROVASCULAR DISEASES, 2013, 35 (03) : 195 - 201
  • [7] CTA Spot Sign Predicts Hematoma Expansion in Patients with Delayed Presentation After Intracerebral Hemorrhage
    Brouwers, H. Bart
    Falcone, Guido J.
    McNamara, Kristen A.
    Ayres, Alison M.
    Oleinik, Alexandra
    Schwab, Kristin
    Romero, Javier M.
    Viswanathan, Anand
    Greenberg, Steven M.
    Rosand, Jonathan
    Goldstein, Joshua N.
    [J]. NEUROCRITICAL CARE, 2012, 17 (03) : 421 - 428
  • [8] Predicting the Outcome of Patients With Subarachnoid Hemorrhage Using Machine Learning Techniques
    de Toledo, Paula
    Rios, Pablo M.
    Ledezma, Agapito
    Sanchis, Araceli
    Alen, Jose F.
    Lagares, Alfonso
    [J]. IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2009, 13 (05): : 794 - 801
  • [9] The second (main) phase of an open, randomised, multicentre study to investigate the effectiveness of an intensive blood pressure reduction in acute cerebral haemorrhage trial (INTERACT2)
    Delcourt, C.
    Huang, Y.
    Wang, J.
    Heeley, E.
    Lindley, R.
    Stapf, C.
    Tzourio, C.
    Arima, H.
    Parsons, M.
    Sun, J.
    Neal, B.
    Chalmers, J.
    Anderson, C.
    [J]. INTERNATIONAL JOURNAL OF STROKE, 2010, 5 (02) : 110 - 116
  • [10] Demchuk AM, 2012, LANCET NEUROL, V11, P307, DOI 10.1016/S1474-4422(12)70038-8