THE STRONG INVISCID LIMIT OF THE ISENTROPIC COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH NAVIER BOUNDARY CONDITIONS

被引:24
作者
Paddick, Matthew [1 ]
机构
[1] Univ Paris 06, Sorbonne Univ, CNRS UMR 7598, Lab Jacques Louis Lions, 4 Pl Jussieu, F-75005 Paris, France
关键词
Compressible Navier-Stokes equations; Navier (slip) boundary condition; conormal Sobolev spaces; inviscid limit problem; VANISHING VISCOSITY LIMIT; INCOMPRESSIBLE LIMIT; BOLTZMANN-EQUATION; FOURIER SYSTEM; SLIP; DOMAIN; LAYERS; EXISTENCE; FLOW; DENSITY;
D O I
10.3934/dcds.2016.36.2673
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain existence and conormal Sobolev regularity of strong solutions to the 3D compressible isentropic Navier-Stokes system on the half-space with a Navier boundary condition, over a time that is uniform with respect to the viscosity parameters when these are small. These solutions then converge globally in space and strongly in L-2 towards the solution of the compressible isentropic Euler system when the viscosity parameters go to zero.
引用
收藏
页码:2673 / 2709
页数:37
相关论文
共 48 条
[1]  
Ancona F., 2006, WASCOM 2005 13 C WAV, P13
[2]   EXISTENCE AND UNIQUENESS OF SOLUTION TO BIDIMENSIONAL EULER EQUATION [J].
BARDOS, C .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1972, 40 (03) :769-790
[3]   THE INCOMPRESSIBLE EULER LIMIT OF THE BOLTZMANN EQUATION WITH ACCOMMODATION BOUNDARY CONDITION [J].
Bardos, Claude ;
Golse, Francois ;
Paillard, Lionel .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2012, 10 (01) :159-190
[4]   On compressible Navier-Stokes equations with density dependent viscosities in bounded domains [J].
Bresch, Didier ;
Desjardins, Benoit ;
Gerard-Varet, David .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2007, 87 (02) :227-235
[5]  
Bucur Dorin, 2012, ESAIM Proceedings, V37, P117, DOI 10.1051/proc/201237003
[6]  
Bulícek M, 2007, INDIANA U MATH J, V56, P51
[7]   On the vanishing viscosity limit for the 2D incompressible Navier-Stokes equations with the friction type boundary conditions [J].
Clopeau, T ;
Mikelic, A ;
Robert, R .
NONLINEARITY, 1998, 11 (06) :1625-1636
[8]   The 3-D Inviscid Limit Result Under Slip Boundary Conditions. A Negative Answer [J].
da Veiga, H. Beirao ;
Crispo, F. .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2012, 14 (01) :55-59
[9]   A survey on Fourier analysis methods for solving the compressible Navier-Stokes equations [J].
Danchin, Raphael .
SCIENCE CHINA-MATHEMATICS, 2012, 55 (02) :245-275
[10]   A survey of the compressible Navier-Stokes equations [J].
Desjardins, B ;
Lin, CK .
TAIWANESE JOURNAL OF MATHEMATICS, 1999, 3 (02) :123-137