The abiotic stress-responsive NAC-type transcription factor SlNAC4 regulates salt and drought tolerance and stress-related genes in tomato (Solanum lycopersicum)

被引:131
|
作者
Zhu, Mingku [1 ]
Chen, Guoping [1 ]
Zhang, Jianling [1 ]
Zhang, Yanjie [1 ]
Xie, Qiaoli [1 ]
Zhao, Zhiping [1 ]
Pan, Yu [1 ]
Hu, Zongli [1 ,2 ]
机构
[1] Chongqing Univ, Bioengn Coll, Key Lab Biorheol Sci & Technol, Minist Educ, Chongqing 400044, Peoples R China
[2] Chongqing Univ, Bioengn Coll, Chongqing 400030, Peoples R China
基金
中国国家自然科学基金;
关键词
Abiotic stress; Hormone; NAC transcription factor; SlNAC4; Tomato; ASCORBATE PEROXIDASE GENE; MOLECULAR CHARACTERIZATION; FUNCTIONAL-ANALYSIS; CONFERS DROUGHT; ABSCISIC-ACID; FACTOR FAMILY; EXPRESSION; ARABIDOPSIS; IDENTIFICATION; PROTEIN;
D O I
10.1007/s00299-014-1662-z
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
SlNAC4 functions as a stress-responsive transcription factor and might be useful for crop salt and drought tolerance improvement. Abiotic stresses, especially salinity and drought, are major factors that significantly limit crop growth and productivity. Plant-specific NAC transcription factors play crucial roles in various stress responses. However, to date only little information regarding stress-related NAC genes is available in tomato. Previously, we reported that tomato SlNAC4-SlNAC10 genes are involved in response of various abiotic stresses. Expression analysis revealed that SlNAC4 was also induced significantly by MeJA, but not by ABA. To further unravel the function of SlNAC4 in response to abiotic stress, we investigated the effects of salt and drought stress on wild-type and SlNAC4-RNAi transgenic tomato plants. The results demonstrated that the root and shoot growth of RNAi plants was more inhibited by salt stress than that of wild-type at post-germination stage. The leaf salt assay also showed less tolerance in transgenic plants by retaining lower chlorophyll content compared with wild-type plants. In addition, transgenic plants became less tolerant to salt and drought stress in soil, which were demonstrated by lower levels of water and chlorophyll contents, and higher water loss rate in their leaves as compared to wild-type plants under stressed conditions. Notably, the expressions of multiple stress-related genes were downregulated in SlNAC4-RNAi plants under both control and salt-stressed conditions. Collectively, these results highlight the important role of SlNAC4 functions as a stress-responsive transcription factor in positive modulation of abiotic stress tolerance through an ABA-independent signaling networks and possibly in response to biotic stress, and may hold promising applications in the engineering of salt- and drought-tolerant tomato.
引用
收藏
页码:1851 / 1863
页数:13
相关论文
共 50 条
  • [21] CarNAC4, a NAC-type chickpea transcription factor conferring enhanced drought and salt stress tolerances in Arabidopsis
    Yu, Xingwang
    Liu, Yanmin
    Wang, Shuang
    Tao, Yuan
    Wang, Zhankui
    Shu, Yingjie
    Peng, Hui
    Mijiti, Abudoukeyumu
    Wang, Ze
    Zhang, Hua
    Ma, Hao
    PLANT CELL REPORTS, 2016, 35 (03) : 613 - 627
  • [22] Molecular Characterization of Six Tissue-Specific or Stress-Inducible Genes of NAC Transcription Factor Family in Tomato (Solanum lycopersicum)
    Mingku Zhu
    Zongli Hu
    Shuang Zhou
    Lingling Wang
    Tingting Dong
    Yu Pan
    Guoping Chen
    Journal of Plant Growth Regulation, 2014, 33 : 730 - 744
  • [23] Lilium pumilum stress-responsive NAC transcription factor LpNAC17 enhances salt stress tolerance in tobacco
    Wang, Yiping
    Cui, Ying
    Liu, Bin
    Wang, Ying
    Sun, Shaoying
    Wang, Jingwen
    Tan, Mengmeng
    Yan, Hao
    Zhang, Yanni
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [24] Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice
    Nakashima, Kazuo
    Tran, Lam-Son P.
    Nguyen, Dong Van
    Fujita, Miki
    Maruyama, Kyonoshin
    Todaka, Daisuke
    Ito, Yusuke
    Hayashi, Nagao
    Shinozaki, Kazuo
    Yamaguchi-Shinozaki, Kazuko
    PLANT JOURNAL, 2007, 51 (04) : 617 - 630
  • [25] The NAC-type transcription factor CaNAC46 regulates the salt and drought tolerance of transgenic Arabidopsis thaliana
    Jing Ma
    Li-yue Wang
    Jia-xi Dai
    Ying Wang
    Duo Lin
    BMC Plant Biology, 21
  • [26] A chickpea stress-responsive NAC transcription factor, CarNAC5, confers enhanced tolerance to drought stress in transgenic Arabidopsis
    Yu, Xingwang
    Liu, Yanmin
    Wang, Shuang
    Tao, Yuan
    Wang, Zhankui
    Mijiti, Abudoukeyumu
    Wang, Ze
    Zhang, Hua
    Ma, Hao
    PLANT GROWTH REGULATION, 2016, 79 (02) : 187 - 197
  • [27] Overexpression of a novel NAC-type tomato transcription factor, SlNAM1, enhances the chilling stress tolerance of transgenic tobacco
    Li, Xiao-Dong
    Zhuang, Kun-Yang
    Liu, Zhong-Ming
    Yang, Dong-Yue
    Ma, Na-Na
    Meng, Qing-Wei
    JOURNAL OF PLANT PHYSIOLOGY, 2016, 204 : 54 - 65
  • [28] SlDEAD31, a Putative DEAD-Box RNA Helicase Gene, Regulates Salt and Drought Tolerance and Stress-Related Genes in Tomato
    Zhu, Mingku
    Chen, Guoping
    Dong, Tingting
    Wang, Lingling
    Zhang, Jianling
    Zhao, Zhiping
    Hu, Zongli
    PLOS ONE, 2015, 10 (08):
  • [29] An apple transcription factor, MdDREB76, confers salt and drought tolerance in transgenic tobacco by activating the expression of stress-responsive genes
    Sharma, Vishal
    Goel, Parul
    Kumar, Sanjay
    Singh, Anil Kumar
    PLANT CELL REPORTS, 2019, 38 (02) : 221 - 241
  • [30] Genome-Wide Identification of NAC Transcription Factor Family and Functional Analysis of the Abiotic Stress-Responsive Genes in Medicago sativa L.
    Min, Xueyang
    Jin, Xiaoyu
    Zhang, Zhengshe
    Wei, Xingyi
    Ndayambaza, Boniface
    Wang, Yanrong
    Liu, Wenxian
    JOURNAL OF PLANT GROWTH REGULATION, 2020, 39 (01) : 324 - 337