The abiotic stress-responsive NAC-type transcription factor SlNAC4 regulates salt and drought tolerance and stress-related genes in tomato (Solanum lycopersicum)

被引:131
|
作者
Zhu, Mingku [1 ]
Chen, Guoping [1 ]
Zhang, Jianling [1 ]
Zhang, Yanjie [1 ]
Xie, Qiaoli [1 ]
Zhao, Zhiping [1 ]
Pan, Yu [1 ]
Hu, Zongli [1 ,2 ]
机构
[1] Chongqing Univ, Bioengn Coll, Key Lab Biorheol Sci & Technol, Minist Educ, Chongqing 400044, Peoples R China
[2] Chongqing Univ, Bioengn Coll, Chongqing 400030, Peoples R China
基金
中国国家自然科学基金;
关键词
Abiotic stress; Hormone; NAC transcription factor; SlNAC4; Tomato; ASCORBATE PEROXIDASE GENE; MOLECULAR CHARACTERIZATION; FUNCTIONAL-ANALYSIS; CONFERS DROUGHT; ABSCISIC-ACID; FACTOR FAMILY; EXPRESSION; ARABIDOPSIS; IDENTIFICATION; PROTEIN;
D O I
10.1007/s00299-014-1662-z
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
SlNAC4 functions as a stress-responsive transcription factor and might be useful for crop salt and drought tolerance improvement. Abiotic stresses, especially salinity and drought, are major factors that significantly limit crop growth and productivity. Plant-specific NAC transcription factors play crucial roles in various stress responses. However, to date only little information regarding stress-related NAC genes is available in tomato. Previously, we reported that tomato SlNAC4-SlNAC10 genes are involved in response of various abiotic stresses. Expression analysis revealed that SlNAC4 was also induced significantly by MeJA, but not by ABA. To further unravel the function of SlNAC4 in response to abiotic stress, we investigated the effects of salt and drought stress on wild-type and SlNAC4-RNAi transgenic tomato plants. The results demonstrated that the root and shoot growth of RNAi plants was more inhibited by salt stress than that of wild-type at post-germination stage. The leaf salt assay also showed less tolerance in transgenic plants by retaining lower chlorophyll content compared with wild-type plants. In addition, transgenic plants became less tolerant to salt and drought stress in soil, which were demonstrated by lower levels of water and chlorophyll contents, and higher water loss rate in their leaves as compared to wild-type plants under stressed conditions. Notably, the expressions of multiple stress-related genes were downregulated in SlNAC4-RNAi plants under both control and salt-stressed conditions. Collectively, these results highlight the important role of SlNAC4 functions as a stress-responsive transcription factor in positive modulation of abiotic stress tolerance through an ABA-independent signaling networks and possibly in response to biotic stress, and may hold promising applications in the engineering of salt- and drought-tolerant tomato.
引用
收藏
页码:1851 / 1863
页数:13
相关论文
共 50 条
  • [11] An abiotic stress-responsive bZIP transcription factor from wild and cultivated tomatoes regulates stress-related genes
    Yanez, Monica
    Caceres, Susan
    Orellana, Sandra
    Bastias, Adriana
    Verdugo, Isabel
    Ruiz-Lara, Simon
    Casaretto, Jose A.
    PLANT CELL REPORTS, 2009, 28 (10) : 1497 - 1507
  • [12] Molecular Characterization of Six Tissue-Specific or Stress-Inducible Genes of NAC Transcription Factor Family in Tomato (Solanum lycopersicum)
    Zhu, Mingku
    Hu, Zongli
    Zhou, Shuang
    Wang, Lingling
    Dong, Tingting
    Pan, Yu
    Chen, Guoping
    JOURNAL OF PLANT GROWTH REGULATION, 2014, 33 (04) : 730 - 744
  • [13] An abiotic stress-responsive bZIP transcription factor from wild and cultivated tomatoes regulates stress-related genes
    Mónica Yáñez
    Susan Cáceres
    Sandra Orellana
    Adriana Bastías
    Isabel Verdugo
    Simón Ruiz-Lara
    Jose A. Casaretto
    Plant Cell Reports, 2009, 28 : 1497 - 1507
  • [14] OoNAC72, a NAC-Type Oxytropis ochrocephala Transcription Factor, Conferring Enhanced Drought and Salt Stress Tolerance in Arabidopsis
    Guan, Huirui
    Liu, Xin
    Niu, Fei
    Zhao, Qianqian
    Fan, Na
    Cao, Duo
    Meng, Dian
    He, Wei
    Guo, Bin
    Wei, Yahui
    Fu, Yanping
    FRONTIERS IN PLANT SCIENCE, 2019, 10
  • [15] Evolution and functional diversity of abiotic stress-responsive NAC transcription factor genes in Linum usitatissimum L
    Saha, Dipnarayan
    Shaw, Arun Kumar
    Datta, Subhojit
    Mitra, Jiban
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2021, 188
  • [16] Overexpression of a Stress-Responsive NAC Transcription Factor Gene ONACO22 Improves Drought and Salt Tolerance in Rice
    Hong, Yongbo
    Zhang, Huijuan
    Huang, Lei
    Li, Dayong
    Song, Fengming
    FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [17] The NAC-type transcription factor CaNAC46 regulates the salt and drought tolerance of transgenic Arabidopsis thaliana
    Ma, Jing
    Wang, Li-yue
    Dai, Jia-xi
    Wang, Ying
    Lin, Duo
    BMC PLANT BIOLOGY, 2021, 21 (01)
  • [18] Overexpression of PgDREB2A transcription factor enhances abiotic stress tolerance and activates downstream stress-responsive genes
    Agarwal, Parinita
    Agarwal, Pradeep K.
    Joshi, Arvind J.
    Sopory, Sudhir K.
    Reddy, Malireddy K.
    MOLECULAR BIOLOGY REPORTS, 2010, 37 (02) : 1125 - 1135
  • [19] The multiple stress-responsive transcription factor SlNAC1 improves the chilling tolerance of tomato
    Ma, Na-Na
    Zuo, Yan-Qiu
    Liang, Xiao-Qing
    Yin, Bo
    Wang, Guo-Dong
    Meng, Qing-Wei
    PHYSIOLOGIA PLANTARUM, 2013, 149 (04) : 474 - 486
  • [20] Three stress-responsive NAC transcription factors from Populus euphratica differentially regulate salt and drought tolerance in transgenic plants
    Lu, Xin
    Zhang, Xiaofei
    Duan, Hui
    Lian, Conglong
    Liu, Chao
    Yin, Weilun
    Xia, Xinli
    PHYSIOLOGIA PLANTARUM, 2018, 162 (01) : 73 - 97