Large Covariance Estimation for Compositional Data Via Composition-Adjusted Thresholding

被引:34
作者
Cao, Yuanpei [1 ]
Lin, Wei [2 ,3 ]
Li, Hongzhe [1 ]
机构
[1] Univ Penn, Perelman Sch Med, Dept Biostat & Epidemiol, Philadelphia, PA 19104 USA
[2] Peking Univ, Sch Math Sci, Beijing, Peoples R China
[3] Peking Univ, Ctr Stat Sci, Beijing, Peoples R China
关键词
Adaptive thresholding; Basis covariance; Centered log-ratio covariance; High dimensionality; Microbiome; Regularization; GUT MICROBIOME; NORMAL DISTRIBUTIONS; CONNECTANCE; PATTERNS; OBESITY;
D O I
10.1080/01621459.2018.1442340
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
High-dimensional compositional data arise naturally in many applications such as metagenomic data analysis. The observed data lie in a high-dimensional simplex, and conventional statistical methods often fail to produce sensible results due to the unit-sum constraint. In this article, we address the problem of covariance estimation for high-dimensional compositional data and introduce a composition-adjusted thresholding (COAT) method under the assumption that the basis covariance matrix is sparse. Our method is based on a decomposition relating the compositional covariance to the basis covariance, which is approximately identifiable as the dimensionality tends to infinity. The resulting procedure can be viewed as thresholding the sample centered log-ratio covariance matrix and hence is scalable for large covariance matrices. We rigorously characterize the identifiability of the covariance parameters, derive rates of convergence under the spectral norm, and provide theoretical guarantees on support recovery. Simulation studies demonstrate that the COAT estimator outperforms some existing optimization-based estimators. We apply the proposed method to the analysis of a microbiome dataset to understand the dependence structure among bacterial taxa in the human gut.
引用
收藏
页码:759 / 772
页数:14
相关论文
共 33 条
[1]  
AITCHISON J, 1982, J ROY STAT SOC B, V44, P139
[2]   LOGISTIC-NORMAL DISTRIBUTIONS - SOME PROPERTIES AND USES [J].
AITCHISON, J ;
SHEN, SM .
BIOMETRIKA, 1980, 67 (02) :261-272
[3]  
Aitchison J., 2003, STAT ANAL COMPOSITIO
[4]  
ANDERSON T. W., 2003, INTRO MULTIVARIATE S, VSecond
[5]   Enterotypes of the human gut microbiome [J].
Arumugam, Manimozhiyan ;
Raes, Jeroen ;
Pelletier, Eric ;
Le Paslier, Denis ;
Yamada, Takuji ;
Mende, Daniel R. ;
Fernandes, Gabriel R. ;
Tap, Julien ;
Bruls, Thomas ;
Batto, Jean-Michel ;
Bertalan, Marcelo ;
Borruel, Natalia ;
Casellas, Francesc ;
Fernandez, Leyden ;
Gautier, Laurent ;
Hansen, Torben ;
Hattori, Masahira ;
Hayashi, Tetsuya ;
Kleerebezem, Michiel ;
Kurokawa, Ken ;
Leclerc, Marion ;
Levenez, Florence ;
Manichanh, Chaysavanh ;
Nielsen, H. Bjorn ;
Nielsen, Trine ;
Pons, Nicolas ;
Poulain, Julie ;
Qin, Junjie ;
Sicheritz-Ponten, Thomas ;
Tims, Sebastian ;
Torrents, David ;
Ugarte, Edgardo ;
Zoetendal, Erwin G. ;
Wang, Jun ;
Guarner, Francisco ;
Pedersen, Oluf ;
de Vos, Willem M. ;
Brunak, Soren ;
Dore, Joel ;
Weissenbach, Jean ;
Ehrlich, S. Dusko ;
Bork, Peer .
NATURE, 2011, 473 (7346) :174-180
[6]   Investigating microbial co-occurrence patterns based on metagenomic compositional data [J].
Ban, Yuguang ;
An, Lingling ;
Jiang, Hongmei .
BIOINFORMATICS, 2015, 31 (20) :3322-3329
[7]   COVARIANCE REGULARIZATION BY THRESHOLDING [J].
Bickel, Peter J. ;
Levina, Elizaveta .
ANNALS OF STATISTICS, 2008, 36 (06) :2577-2604
[8]   OPTIMAL RATES OF CONVERGENCE FOR SPARSE COVARIANCE MATRIX ESTIMATION [J].
Cai, T. Tony ;
Zhou, Harrison H. .
ANNALS OF STATISTICS, 2012, 40 (05) :2389-2420
[9]   Adaptive Thresholding for Sparse Covariance Matrix Estimation [J].
Cai, Tony ;
Liu, Weidong .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (494) :672-684
[10]   The ecology of the microbiome: Networks, competition, and stability [J].
Coyte, Katharine Z. ;
Schluter, Jonas ;
Foster, Kevin R. .
SCIENCE, 2015, 350 (6261) :663-666