Exact Solutions of Schrodinger Equation for the Position-Dependent Effective Mass Harmonic Oscillator

被引:32
作者
Amir, Naila [1 ]
Iqbal, Shahid [1 ]
机构
[1] Natl Univ Sci Technol, Sch Nat Sci, Islamabad, Pakistan
关键词
nonlinear harmonic oscillator; position-dependent effective mass system; Schrodinger equation modified Hermite polynomials; WAVE-PACKET REVIVAL; SUPERSYMMETRIC APPROACH; ALGEBRAIC APPROACH; SERIES SOLUTIONS; QUANTUM-SYSTEMS; STATES; HETEROSTRUCTURES; POTENTIALS; GENERATION; PARTICLES;
D O I
10.1088/0253-6102/62/6/03
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A one-dimensional harmonic oscillator with position-dependent effective mass is studied. We quantize the oscillator to obtain a quantum Hamiltonian, which is manifestly Hermitian in configuration space, and the exact solutions to the corresponding Schrodinger equation are obtained analytically in terms of modified Hermite polynomials. It is shown that the obtained solutions reduce to those of simple harmonic oscillator as the position dependence of the mass vanishes.
引用
收藏
页码:790 / 794
页数:5
相关论文
共 87 条
[61]   d-dimensional generalization of the point canonical transformation for a quantum particle with position-dependent mass [J].
Mustafa, Omar ;
Mazharimousavi, S. Habib .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (33) :10537-10547
[62]   New exact solution of the one-dimensional Dirac equation for the Woods-Saxon potential within the effective mass case [J].
Panella, O. ;
Biondini, S. ;
Arda, A. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (32)
[63]   Effects of position-dependent effective mass and dielectric function of a hydrogenic donor in a quantum dot [J].
Peter, A. John ;
Navaneethakrishnan, K. .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2008, 40 (08) :2747-2751
[64]   Supersymmetric approach to quantum systems with position-dependent effective mass [J].
Plastino, AR ;
Rigo, A ;
Casas, M ;
Garcias, F ;
Plastino, A .
PHYSICAL REVIEW A, 1999, 60 (06) :4318-4325
[65]  
Plastino AR, 2000, REV MEX FIS, V46, P78
[66]   Bohmian quantum theory of motion for particles with position-dependent effective mass [J].
Plastino, AR ;
Casas, M ;
Plastino, A .
PHYSICS LETTERS A, 2001, 281 (5-6) :297-304
[67]   First-order intertwining operators and position-dependent mass Schrodinger equations in d dimensions [J].
Quesne, C .
ANNALS OF PHYSICS, 2006, 321 (05) :1221-1239
[68]   Classical field theory for a non-Hermitian Schrodinger equation with position-dependent masses [J].
Rego-Monteiro, M. A. ;
Nobre, F. D. .
PHYSICAL REVIEW A, 2013, 88 (03)
[69]   Treating some solid state problems with the Dirac equation [J].
Renan, R ;
Pacheco, MH ;
Almeida, CAS .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (50) :L509-L514
[70]   A Lie algebraic approach to effective mass Schrodinger equations [J].
Roy, B ;
Roy, P .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (17) :3961-3969