A note on the largest digits in Luroth expansion

被引:13
作者
Shen, Luming [1 ]
Yu, Yiying [1 ]
Zhou, Yuxin [1 ]
机构
[1] Hunan Agr Univ, Coll Sci, Changsha 410128, Hunan, Peoples R China
关键词
Luroth series; largest digits; Hausdorff dimension; SERIES;
D O I
10.1142/S1793042114500122
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is well known that every x epsilon (0, 1] can be expanded into an infinite Luroth series with the form of x = 1/d(1)(x) + center dot center dot center dot + 1/(d(1)(x)-1)(d(1)(x)) center dot center dot center dot (d(n-1)(x)-1) d(n-1)(x)dn(x) + center dot center dot center dot, where d(n)(x) >= 2 and is called the nth digits of x for each n >= 1. In [Representations of Real Numbers by Infinite Series, Lecture Notes in Mathematics, Vol. 502 (Springer, New York, 1976)], Galambos showed that for Lebesgue almost all x epsilon (0, 1], lim(n ->+infinity) log Ln(x)/log n = 1, where L-n(x) = max{d(1)(x),...,d(n)(x)} denotes the largest digit among the first n ones of x. In this paper, we consider the Hausdorff dimension of the set E(alpha) - {x epsilon (0, 1] : lim(n ->infinity) log Ln(x)/log n = alpha} for any alpha >= 0.
引用
收藏
页码:1015 / 1023
页数:9
相关论文
共 15 条
[1]  
[Anonymous], GRADUATE TEXTS MATH
[2]   Frequency of digits in the Luroth expansion [J].
Barreira, Luis ;
Iommi, Godofredo .
JOURNAL OF NUMBER THEORY, 2009, 129 (06) :1479-1490
[3]  
Dajani K., 2002, Carus Mathematical Monographs, V29
[4]  
Falconer KJ, 1999, Fractal geometry: mathematical foundations and applications
[5]   Dimension of Besicovitch-Eggleston sets in countable symbolic space [J].
Fan, Aihua ;
Liao, Lingmin ;
Ma, Jihua ;
Wang, Baowei .
NONLINEARITY, 2010, 23 (05) :1185-1197
[6]  
GALAMBOS J., 1976, Lecture Notes in Math., V502
[7]   FRACTALS AND SELF SIMILARITY [J].
HUTCHINSON, JE .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (05) :713-747
[8]  
JAGER H, 1969, P K NED AKAD A MATH, V72, P31
[9]  
Luroth, 1883, MATH ANN, V21, P411, DOI DOI 10.1007/BF01443883
[10]  
Mauldin D., 2003, CAMBRIDGE TRACTS MAT, V147